so sánh A=\(\frac{2004^{2003}+1}{2004^{2004}+1}\) và B=\(\frac{2004^{2004}+1}{2004^{2005}+1}\)
so sánh A=\(\frac{2004^{2003}+1}{2004^{2004}+1}\) và B=\(\frac{2004^{2004}+1}{2004^{2005}+1}\)
\(2004A=\frac{2004^{2004}+2004}{2004^{2004}+1}=1+\frac{2003}{2004^{2004}+1}\)
\(2004B=\frac{2004^{2005}+2004}{2004^{2005}+1}=1+\frac{2003}{2004^{2005}+1}\)
\(\frac{2003}{2004^{2004}+1}>\frac{2003}{2004^{2005}+1}\)
\(\Rightarrow2004A>2004B\)
\(\Rightarrow A>B\)
2004A=\(\frac{2004^{2004}+2004}{2004^{2004}+1}\)
\(\frac{2004^{2004}+2004}{2004^{2004}+1}-1=\frac{2003}{2004^{2004}+1}\)
2004B=\(\frac{2004^{2005}+2004}{2004^{2005}+1}\)
\(\frac{2004^{2005}+2004}{2004^{2005}+1}-1=\frac{2003}{2004^{2005}+1}\)
Ta thấy :\(\frac{2003}{2004^{2004}+1}>\frac{2003}{2004^{2005}+1}\)
=> \(2004A>2004B\)
Vậy \(A>B\)
so sánh A =2004^2003+1/2004^2004+1/ và B=2004^2004+1/2004^2005+1
Có : 2004A = 2004^2004+2004/2004^2004+1 = 1 + 2003/2004^2004+1
2004B = 2004^2005+2004/2004^2005+1 = 1 + 2003/2004^2005+1 < 1 + 2003/2004^2004+1 = 2014A
=> A > B
Tk mk nha
\(B=\frac{2004^{2004}+1}{2004^{2005}+1}< \frac{2004^{2004}+1+2003}{2004^{2005}+1+2003}=\frac{2004^{2004}+2004}{2004^{2005}+2004}=\frac{2004\left(2004^{2003}+1\right)}{2004\left(2004^{2004}+1\right)}=\frac{2004^{2003}+1}{2004^{2004}+1}=A\)
Vậy A > B
tớ có cách khác cũng ra kết quả giống bạn
So sánh 2 phân số sau:A=\(\frac{2004^{2003}+1}{2004^{2004}+1}\)và B=\(\frac{2004^{2004}+1}{2004^{2005}+1}\)
Bài này mik nghĩ đáp án là A<B nhưng ko biết giải thích thế nào
Bạn tham khảo nhé
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\) \(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(B=\frac{2004^{2004}+1}{2004^{2005}+1}< \frac{2004^{2004}+1+2003}{2004^{2005}+1+2003}=\frac{2004^{2004}+2004}{2004^{2005}+2004}=\frac{2004\left(2004^{2003}+1\right)}{2004\left(2004^{2004}+1\right)}=\frac{2004^{2003}+1}{2004^{2004}+1}\)
Lại có :
\(A=\frac{2004^{2003}+1}{2004^{2004}+1}\)
\(\Rightarrow\)\(B< A\) hay \(A>B\)
Vậy \(A>B\)
(k) đúng cho mình
so sánh A và B
A = \(\frac{2003}{2004}+\frac{2004}{2005}\)và B = \(\frac{2003+2004}{2004+2005}\)
\(B=\frac{2003+2004}{2004+2005}=\frac{2003}{2004+2005}+\frac{2004}{2004+2005}\)
Ta có: \(\frac{2003}{2004}>\frac{2003}{2004+2005}\)
\(\frac{2004}{2005}>\frac{2004}{2004+2005}\)
\(\frac{2003}{2004}+\frac{2004}{2005}>\frac{2003+2004}{2004+2005}\)
\(A>B\)
Vậy A>B
\(\text{ Bài giải}\)
\(A=\frac{2003}{2004}+\frac{2004}{2005}=0,999500998 + 0,999501247=1.99900225\)
\(B=\frac{2003+2004}{2004+2005}=\frac{4007}{4009}=0,999501122\)
\(\text{Vì : }1,99900224>0,999501122\text{ nên }A>B\)
\(\text{Vậy : }A>B\)
So sánh:2003*2004-1/2003*2004 và 2004*2005-1/2004*2005
Câu hỏi của linh phạm - Toán lớp 6 - Học toán với OnlineMath
So Sánh 2003*2004-1/2003*2004 và 2004*2005-1/2004*2005
So sánh:
2003*2004-1/2003*2004 và 2004*2005-1/2004*2005
giải giùm mình với:
So sánh A và B, biết
\(A=\frac{2003+2004}{2004+2005}\)
\(B=\frac{2003}{2004+2005}\)+\(\frac{2004}{2004+2005}\)
so sánh A và B
A=\(\frac{20032}{2004}+\frac{2004}{2005}\)và B = \(\frac{2003+2004}{2004+2005}\)
\(A=\frac{20032}{2004}+\frac{2004}{2005}=9,99600798+0,999501247=10,9955092\)
\(B=\frac{2003+2004}{2004+2005}=\frac{4007}{4009}\)
\(\text{Vì : }10,9955092>1\text{ mà }\frac{4007}{4009}< 1\text{ nên }10,9955092>\frac{4007}{4009}\)
\(\text{Vậy : }A>B\)