xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xz ( x + z ) + xy ( x + y + z ) + yz ( x + y + z )
= xz ( x + z ) + xy ( x + z ) + yz ( x + z ) + xy2 + y2z
= ( xy + yz + zx ) ( x + z ) + y2( x + z )
= ( xy + y2 + yz + zx )( x + z )
= ( x + y ) ( y + z ) ( x + z )
Chúc bạn học tốt!
#peace
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz=xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)\)
\(=y\left(x+y+z\right)\left(x+z\right)+xz\left(x+z\right)=\left(xy+y^2+zy+xz\right)\left(x+z\right)=\left\{y\left(x+y\right)+z\left(x+y\right)\right\}\left(x+z\right)=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)
\(=x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz\)
\(\text{Chúc bạn học tốt \!}\)
\(\text{Nếu đúng thì tích nha !}\)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
=x2y+xy2+y2x+yz2+x2z+xz2+2xyz
=> hết biết làm
Phân tích thành nhân tử: xy(x + y) + yz(y + z) + xz(x + z) + 2xyz
xy(x + y) + yz(y + z) + xz(x + z) + 2xyz
= x 2 y + x y 2 + yz(y + z) + x 2 z + x z 2 + xyz + xyz
= ( x 2 y + x 2 z) + yz(y + z) + (x y 2 + xyz) + (x z 2 + xyz)
= x 2 (y + z) + yz(y + z) + xy(y+ z) + xz(y + z)
= (y + z)( x 2 + yz + xy + xz) = (y + z)[( x 2 + xy) + (xz + yz)]
= (y + z)[x(x + y) + z(x + y)] = (y + z)(x+ y)(x + z)
phân tích đa thức thành nhân tử : xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Phân tích thành nhân tử
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z2)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Ta co :
Đặt tổng trên là A
A= xy(x+y)+yz(y+z)+xz(x+z)+2xyz
A= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
A= xy(x + y) + yz(y + z + x) + xz(x + z + y)
A= xy(x + y) + z(x + y + z)(y + x)
A= (x + y)(xy + zx + zy + z2 )
A= (x + y)[x(y + z) + z(y + z)]
A= (x + y)(y + z)(z + x)
Phân tích thành nhân tử xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
**** đi nak , làm rui đó
phân tích
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y) + yz(y+z) + xz(x+z) +2xyz
=xy(x+y) + yz(y+z) +xyz + xz(x+z) +xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
\(x^2y+xy^2+y^2z+yz^2+x^2z+xz^2\)
=\(x\left(xy+y^2\right)+y\left(yz+z^2\right)+x\left(xz+z^2\right)\)
ko tick cau tra loi cho nguoi ta mot lan a ?
1. Phân tích thành nhân tử:
xy(x + y) + yz(y + z) + xz(x+z) + 2xyz
\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz.\)
\(=x^2y+xy^2+y^2z+yz^2+xz\left(x+z\right)+2xyz\)
\(=\left(x^2y+xyz\right)+\left(xy^2+y^2z\right)+\text{(}yz^2+xyz\text{)}+xz\left(x+z\right)\)
\(=xy\left(x+z\right)+y^2\left(x+z\right)+yz\left(x+z\right)+xz\left(x+z\right)\)
\(=\left(x+z\right)\left(xy+y^2+yz+xz\right)\)
\(=\left(x+z\right)\text{[}y\left(x+y\right)+z\left(x+y\right)\text{]}\)
\(=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)