Cho ABCD là hình thang cân (AB // CD). Gọi O là giao điểm 2 đường chéo, M là giao điểm của hai cạnh bên kéo dài. Chứng minh: MO là đường trung trực của hai đáy AB và CD.
Cho ABCD là hình thang cân (AB//CD). Gọi O là giao điểm hai đường chéo, M là giao điểm hai cạnh bên (khi kéo dài). Chứng minh MO là đường trung trực của hai đáy AB và CD.
Cho ABCD là hình thang cân (AB // CD). Gọi O là giao điểm 2 đường chéo, M là giao điểm của hai cạnh bên kéo dài. Chứng minh: MO là đường trung trực của hai đáy AB và CD.
Cho ABCD là hình thang cân (AB//CD). Gọi O là giao điểm của hai đường chéo, M là giao điểm của hai đường cao kéo dài
Chứng minh MO là đường trung trực của hai đáy AB và CD
Cau1: Cho hình thang cân ABCD có AB//CD. Gọi O là giao điểm của hai đường chéo, I là giao điểm của AD, BC. Chứng minh OI là trung trực của CD.
Câu2: Cho hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD. Chứng minh CA là tia phân giác góc C.
2)
Có: \(\left\{{}\begin{matrix}AB=AD\left(gt\right)\\AD=BC\left(2.cạnh.bên.hình.thang.cân\right)\end{matrix}\right.\)
\(\Rightarrow AB=BC\Rightarrow\Delta ABC.cân.tại.B\)
Mà AB // ED (gt)
\(\Rightarrow\widehat{BAC}=\widehat{ACD}\left(so.le.trong\right)\)
\(\Rightarrow\widehat{ACB}=\widehat{ACD}\)
=> CA là tia phân giác của góc C.
1. Hình thang cân ABCD có O là giao điểm của hai đường thẳng chứa cạnh bên AD,BC và E là giao điểm của hai đường chéo. Chứng minh rằng OE là đường trung trực cảu hai đáy.
2. Hình thang cân ABCD (AB//CD) có hai đường chéo cắt nhau tại I, hai đường thẳng chứa các cạnh bên cắt nhau ở K. Chứng minh rằng KI là đường trung trực của hai đáy.
1.
+) Tứ giác ABCD kà hình thang cân => góc ADC = BCD và AD = BC
=> tam giác ODC cân tại O => OD = OC
mà AD = BC => OA = OB
+) tam giác ODB và OCA có: OD = OC; góc DOC chung ; OB = OA
=> Tam giác ODB = OCA (c - g - c)
=> góc ODB = OCA mà góc ODC = OCD => góc ODC - ODB = OCD - OCA
=> góc EDC = ECD => tam giác EDC cân tại E => ED = EC (2)
Từ (1)(2) => OE là đường trung trực của CD
=> OE vuông góc CD mà CD // AB => OE vuông góc với AB
Tam giác OAB cân tại O có OE là đường cao nên đồng thời là đường trung trực
vậy OE là đường trung trực của AB
1. Hình thang cân ABCD có O là giao điểm của hai đường thẳng chứa cạnh bên AD,BC và E là giao điểm của hai đường chéo. Chứng minh rằng OE là đường trung trực cảu hai đáy.
2. Hình thang cân ABCD (AB//CD) có hai đường chéo cắt nhau tại I, hai đường thẳng chứa các cạnh bên cắt nhau ở K. Chứng minh rằng KI là đường trung trực của hai đáy.
Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:
a) OA=OB , OC=OD
b) EO là đường trung trực của hai đáy hình thang ABCD.
Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ
a) Chứng minh ABCD là hình thang cân
b) Tính độ dài cạnh AD, biết chu vi hình thang bằng 20cm.
Bài 3: Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD=AE
a) Tứ giác BDEC là hình gì ? Vì sao?
b) Các điểm D,E ở vị trí nào thì BD=DE=EC?
Mình đang cần gấp. Giúp mình nhé cảm ơn các bạn
Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:
a) OA=OB , OC=OD
b) EO là đường trung trực của hai đáy hình thang ABCD.
Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ
a) Chứng minh ABCD là hình thang cân
b) Tính độ dài cạnh AD, biết chu vi hình thang bằng 20cm.
Bài 3: Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD=AE
a) Tứ giác BDEC là hình gì ? Vì sao?
b) Các điểm D,E ở vị trí nào thì BD=DE=EC?
Mình đang cần gấp. Giúp mình nhé cảm ơn các bạn
Hình thang cân ABCD ( AB//CD) có O là giao điểm của hai đường thẳng chứa cạnh bên AD,BC và E là giao điểm của hai đường chéo. chứng minh rằng OE là đường trung trực của hai đáy.
Ta có: ∠(ADC) = ∠(BCD) (gt)
⇒ ∠(ODC) = ∠(OCD)
⇒ΔOCD cân tại O (dhnb tam giác cân)
⇒ OC = OD
OB + BC = OA + AD
Mà AD = BC (hình thang ABCD cân)
⇒ OA = OB
Xét ΔADC và. ΔBCD:
AD = BC (hình thang ABCD cân )
AC = BD (hình thang ABCD cân)
CD chung
Do đó ΔADC và ΔBCD (c.c.c)
⇒ ∠D1= ∠C1
⇒ΔEDC cân tại E (dhnb tam giác cân)
⇒ EC = ED nên E thuộc đường trung trực CD
OC = OD nên O thuộc đường trung trực CD
E ≠ O. Vậy OE là đường trung trực của CD.
Ta có: BD= AC (hình thang ABCD cân)
⇒ EB + ED = EA + EC mà ED = EC
⇒ EB = EA nên E thuộc đường trung trực AB
Mà OA = OB (cmt)
Nên O thuộc đường trung trực của AB
E ≠ O. Vậy OE là đường trung trực của AB.