Cho tam giác ABC vuông tại A,đường cao AH cắt phân giác Bd tai I
a.Chứng minh IA.BH=IH.BH.Từ đó suy ra AB2 =BH.HC
b.Chứng minh = HI/IA=AD/DC
Cho tam giác ABC vuông tại A,đường cao AH cắt phân giác Bd tai I
a.Chứng minh IA.BH=IH.BH.Từ đó suy ra AB2 =BH.HC
b.Chứng minh = HI/IA=AD/DC
Cho tam giác ABC vuông tại A.Đường cao AH cắt đường phân giác BD tại I.CMR
a,IA.BH=IH.BA
b,AB2=HB.BC
c,HI/IA=AD/DC
chứng minh hộ mình câu a,c
a: Xét ΔBAH có BI là phân giác
nên IA/BA=IH/BH
=>IA*BH=BA*IH
c: HI/HA=BH/BA
AD/DC=BA/BC
mà BH/BA=BA/BC
nên HI/IA=AD/DC
cho tam giác ABC vuông tại A.Đường cao AH cắt đường phân giác BD tại I. chứng minh rằng
a,IA.BH=IH.BA
b,ABʌ2 =HB>BC
c,HI/IA=AD/DC
b: Xé ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)
hay \(AB^2=BH\cdot BC\)
Cho tam giác ABC vuông tại A. Đường cao AH cắt đường phân giác BD tại I. Cm: A) IA.BH= IH.BA B)tam giác ABC=tam giác HBA C)HI/IA=AD/DC
a) Xét ΔABH có BI là đường phân giác ứng với cạnh AH(gt)
nên \(\dfrac{IA}{IH}=\dfrac{BA}{BH}\)(Tính chất đường phân giác)
hay \(IA\cdot BH=IH\cdot BA\)(đpcm)
Cho tam giác ABC vuông tại A . Đường cao AH cắt đường phân giác BD tại I . Chứng Minh Rằng :
a)IA.BH=IH.BA
b) TAM GIÁC ABC đồng dạng TAM GIÁC HBA
c) HI/IA = AD/DC
cho tam giác ABC vuông tại A.Đường cao AH cắt đường phân giác BD tại I. chứng minh rằng
a,IA.BH=IH.BA
b,IA=ID
c,\(\frac{HI}{IA}=\frac{AD}{DC}\)
Cho tam giác ABC vuông tại A, đường cao AH cắt phân giác BD tại I . BK vuông góc BD, CI cắt BK tại K. CI cắt AB tại E.
Chứng minh: a, IA.BH=IH.BA ( đã c/minh )
b, AB^2=BH.BC (đã c/minh)
c, HI/IA=AD/DC (đã c/minh)
d, KE.IC=KC.IE
cho tam giác ABC vuông tại A, đường cao AH cắt đường phân giác BD tại I. Chưng minh HI/IA=AD/DC
xét tam giác ABC và tam giác HBA có
góc BAC=góc AHB=90 độ
góc B chung
suy ra tam giác ABC đồng dạng với tam giác HBA
suy ra AB phần HB = BC phần AB