Tìm x :
\(\frac{5-15x}{-7}<0\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm x biết:
\(\frac{7}{15x}+\frac{9}{10y}=\frac{2}{5}-\frac{359}{30xy}\)
Tìm x, y thuộc Z biết
\(\frac{7}{15x}+\frac{9}{10y}=\frac{2}{5}-\frac{359}{30xy}\)
tính ;
\(\frac{x^4+15x+7}{2x^3}-\frac{x}{14x^2}x\frac{4x^3}{x^4+15x+7}\)
Tìm x biết :
a, [4-3x]=x
b,[5x-3]=2x=1
c,[5+\(\frac{6x}{8}\)] =\(\frac{15x-7}{5}\)
Chú ý [x] là phần nguyên của x
Mình chưa hiểu đề bài của bạn lắm.[ ] đây là dấu ngoặc đơn hay là dấu gì?
Phần nguyên của 1 số hữu tỉ x kí hiệu [x]
là số nguyên lớn nhất không vượt quá x
Tính x,y biết: \(\frac{7}{15x}+\frac{9}{10y}=\frac{2}{5}-\frac{359}{30xy}\)
Lê Nguyên Hao làm sai rồi.
Ở dong thứ tư từ trên xuống thì phải là 14y+27x-12xy=-359.
Ở dòng 7 từ trên xuống thì 718 trở thành 719.Mà 719+63=781.Lại có 781=11*17 trong khi 11*17=187.
Cũng ở dòng đó thì tại sao lại có -7(4y-9)=-28y+63 trong khi ban đầu là +28y
Tìm Max của biểu thức :
a) A= \(\frac{15}{4.\left|3x+7\right|+3}\)+5
b) B= \(\frac{-1}{3}\)+\(\frac{21}{8.\left|15x-21\right|+7}\)
c) C= |x+1| + |3x-4|+ |2x-1|+5
a) Để A lớn nhất thì \(\frac{15}{4.\left|3x+7\right|+3}\) lớn nhất hay 4.|3x + 7| + 3 nhỏ nhất
Có: \(4.\left|3x+7\right|+3\ge3\forall x\)
Dấu "=" xảy ra khi |3x + 7| = 0
=> 3x + 7 = 0
=> 3x = -7
\(\Rightarrow x=\frac{-7}{3}\)
Với x = \(\frac{-7}{3}\) thay vào đề bài ta được A = 10
Vậy \(A_{Max}=10\) khi x = \(\frac{-7}{3}\)
b) Để B lớn nhất thì \(\frac{21}{8.\left|15x-21\right|+7}\) lớn nhất hay 8.|15x - 21| + 7 nhỏ nhất
Có: \(8.\left|15x-21\right|+7\ge7\forall x\)
Dấu "=" xảy ra khi |15x - 21| = 0
=> 15x - 21 = 0
=> 15x = 21
\(\Rightarrow x=\frac{21}{15}=\frac{7}{5}\)
Với \(x=\frac{7}{5}\) thay vảo đề bài ta tìm được B = \(\frac{8}{3}\)
Vậy \(B_{Max}=\frac{8}{3}\) khi x = \(\frac{7}{5}\)
c) Có: \(\begin{cases}\left|x+1\right|\ge x+1\\\left|3x-4\right|\ge4-3x\\\left|2x-1\right|\ge2x-1\end{cases}\)\(\forall x\)
\(\Rightarrow C\ge\left(x+1\right)+\left(4-3x\right)+\left(2x-1\right)+5\)
hay \(C\ge9\)
Dấu "=" xảy ra khi \(\begin{cases}x+1\ge0\\3x-4\le0\\2x-1\ge0\end{cases}\)\(\Rightarrow\begin{cases}x\ge-1\\3x\le4\\2x\ge1\end{cases}\)\(\Rightarrow\begin{cases}x\ge-1\\x\le\frac{3}{4}\\x\ge\frac{1}{2}\end{cases}\)\(\Rightarrow\frac{1}{2}\le x\le\frac{3}{4}\)
Vậy \(C_{Max}=9\) khi \(\frac{1}{2}\le x\le\frac{3}{4}\)
Rút gọn biểu thức:
a, \(\frac{x^4+15x+7}{2x^3+2}.\frac{x}{14x^2+1}.\frac{4x^3+4}{x^4+15x+7}\)
b, \(\frac{x^7+3x^2+2}{x^3-1}.\frac{3x}{x+1}.\frac{x^2+x+1}{x^7+3x^2+2}\)
Giải phương trình sau
\(\frac{2x-1}{3x^2+7\:x+2}+\frac{3}{9x^2+15x+4}-\frac{2x+7}{3x^2-5x-12}=\frac{5}{x+2}\)
\(\frac{2x-1}{3x^2+7x+2}+\frac{3}{9x^2+15x+4}-\frac{2x+7}{3x^2-5x-12}=\frac{5}{x+2}\)
\(\Leftrightarrow\frac{2x-1}{\left(3x+1\right)\left(x+2\right)}+\frac{3}{\left(3x+1\right)\left(3x+4\right)}-\frac{2x+7}{\left(4x+3\right)\left(x-3\right)}=\frac{5}{\left(x+2\right)}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{3x+1}+\frac{1}{3x+1}-\frac{1}{3x+4}+\frac{1}{3x+4}-\frac{1}{x-3}=\frac{5}{x+2}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x-3}=\frac{5}{x+2}\)
\(\Leftrightarrow\frac{x-3-x-2}{\left(x+2\right)\left(x-3\right)}=\frac{5\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}\)
\(\Leftrightarrow5x-3=-5\)
\(\Leftrightarrow x=-\frac{2}{5}\)
Chúc bạn học tốt !!!
Tìm nghiệm của các đa thức sau:
C(x) = (2x-3).(5x+7)
D(x) = (15x5+4x2-8)-(15x5-x-8)
E(x) = (5x7-8x2)-(4x7+4x4)-(x7+4)
C(x)= 2x-3=0 hoac 5x+7=0
2x=0+3 5x=0-7
2x=3 5x=-7
x=3:2 x=-7:5
x=1.5 x=-1.4