Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Wang Jum Kai
Xem chi tiết
Lê Nguyệt Hằng
24 tháng 7 2015 lúc 15:46

C= \(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\) 

=\(\frac{1}{100}-\left(\frac{1}{100.99}+\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\) 

\(\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\) ( viet nguoc lai cho de nhin)

\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\) 

\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\) 

\(-\frac{49}{50}\)

Đinh Tuấn Việt
24 tháng 7 2015 lúc 12:58

C = 1/100 - 1/100.99 - 1/99.98 - 1/98.97 - .... - 1/3.2 - 1/2.1

\(C=\frac{1}{100}-\left(\frac{1}{100.99}+\frac{1}{99.98}+...+\frac{1}{2.1}\right)\)

\(C=\frac{1}{100}-\left(\frac{1}{99}-\frac{1}{100}+\frac{1}{98}-\frac{1}{99}+...+1-\frac{1}{2}\right)\)

\(C=\frac{1}{100}-\left(\frac{1}{100}-\frac{1}{2}\right)=-\frac{1}{2}\)

le tien dung
14 tháng 4 2018 lúc 21:08

thanh niên trên làm đúng

Nguyễn Gia Huy
Xem chi tiết
Nguyễn Bảo Hân
10 tháng 1 2016 lúc 13:48

50 nếu ai thích sakura thì **** mình nếu ai thích sakura mà Ko **** mình thì chứng tỏ bạn Ko thích sakura

sakuraharuno1234
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 11 2021 lúc 22:56

\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{100}-\dfrac{99}{100}=-\dfrac{49}{50}\)

Hoàng Bảo Lâm
Xem chi tiết
Nguyễn Phương Uyên
8 tháng 7 2019 lúc 17:31

1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1

= 1/100 - (1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1)

= 1/100 - (1/1.2 + 1/2.3 + ... + 1/97.98 + 1/98.99 + 1/99.100)

= 1/100 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/97 - 1/98 + 1/98 - 1/99 + 1/99 - 1/100)

= 1/100 - (1 - 1/100)

= 1/100 - 99/100

= -49/50

Nhật Hạ
8 tháng 7 2019 lúc 17:31

\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(=-\left(1-\frac{1}{100}\right)\)

\(=-\frac{99}{100}\)

\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(=-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(=-\left(\frac{1}{1}-\frac{1}{100}\right)\)

\(=-\frac{99}{100}\)

nguyen vu anh
Xem chi tiết
soyeon_Tiểu bàng giải
7 tháng 7 2016 lúc 10:42

\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)

\(C=\frac{1}{100}-\frac{99}{100}\)

\(C=\frac{-98}{100}=\frac{-49}{50}\)

Ủng hộ mk nha ^_-

Hải Triều Nguyễn Hoành
Xem chi tiết
Minh Anh
14 tháng 9 2016 lúc 23:14

\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{97.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\) 

\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(\frac{1}{100}-C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\)

\(\frac{1}{100}-C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{100}-C=1-\frac{1}{100}\)

\(C=C=\frac{1}{50}-1=-\frac{49}{50}\)

Nastu Dragneel
Xem chi tiết
Nhữ Thanh Hương
7 tháng 9 2016 lúc 21:08

C=1/100-(1/100.99+1/99.98+...+1/3.2+1/2.1)

  =1/100-(1-1/2+1/2_1/3+...+1/99-1/100)

  =1/100-(1-1/100)

  =1/100-99/100

  =1/100 chọn cho mình nha!

Nastu Dragneel
Xem chi tiết
lam van ha
Xem chi tiết