Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
_____Teexu_____  Cosplay...
Xem chi tiết
Vương Hy
3 tháng 1 2019 lúc 19:38

Trong sgk có mà bn !

. Định lí Pytago

Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương hai cạnh góc vuông.

∆ABC vuông tại A.

=>  BC2=AB2+AC2

2. Định lí Pytago đảo.

Nếu một tam giác có bình phương của một cạnh bẳng tổng bình phương các cạnh còn lại  thì tam giác đó là tam giác vuông.

∆ABC :BC2=AB2+AC2

=> BAC^= 902

Nga Nguyễn
Xem chi tiết
Pain Thiên Đạo
2 tháng 3 2018 lúc 19:51

có cả định lý pitago đảo à sao chúa Pain éo biết nhỉ vc

Nga Nguyễn
2 tháng 3 2018 lúc 20:03

Pain Thiên Đạoko bt đừng trả lời ok mà ai chẳng bt là có pytago đảo cód đứa sống ngoài ngân hà ms ko bt

NGUYỄN CẢNH LINH QUÂN
2 tháng 3 2018 lúc 20:15

Có thể chứng minh định lý đảo Pytago bằng cách sử dụng định lý cos hoặc chứng minh như sau:

Gọi ABC là tam giác với các cạnh a, b, và c, với a2 + b2 = c2. Dựng một tam giác thứ hai có các cạnh bằng a và b và góc vuông tạo bởi giữa chúng. Theo định lý Pytago thuận, cạnh huyền của tam giác vuông thứ hai này sẽ bằng c = √a2 + b2, và bằng với cạnh còn lại của tam giác thứ nhất. Bởi vì cả hai tam giác có ba cạnh tương ứng cùng bằng chiều dài a, bvà c, do vậy hai tam giác này phải bằng nhau. Do đó góc giữa các cạnh a và b ở tam giác đầu tiên phải là góc vuông.

Chứng minh định lý đảo ở trên sử dụng chính định lý Pytago. Cũng có thể chứng minh định lý đảo mà không cần sử dụng tới định lý thuận.

Một hệ quả của định lý Pytago đảo đó là cách xác định đơn giản một tam giác có là tam giác vuông hay không, hay nó là tam giác nhọn hoặc tam giác tù

TK cho MK

Nguyễn Tất Đạt
Xem chi tiết
Không Tên
22 tháng 7 2018 lúc 21:25

A B C H

Cho  \(\Delta ABC\)có:  \(AB^2+AC^2=BC^2\)đường cao  \(AH\)

Chứng minh:  \(\Delta ABC\)vuông tại A  (tức Pytago đảo)

                Bài làm

Áp dụng định lý Pytago ta có:

       \(AB^2=AH^2+BH^2\)

      \(AC^2=AH^2+HC^2\)

Theo giả thiết ta có:  \(BC^2=AB^2+AC^2\)

\(\Rightarrow\)\(AH^2=BH.CH\)  \(\Rightarrow\)\(\frac{AH}{CH}=\frac{BH}{AH}\)

Xét  \(\Delta ABH\)và  \(\Delta CAH\)có:

    \(\frac{AH}{CH}=\frac{BH}{AH}\) (cmt)

   \(\widehat{AHB}=\widehat{CHA}=90^0\)

suy ra:   \(\Delta ABH~\Delta CAH\)

\(\Rightarrow\)\(\widehat{BAH}=\widehat{ACH}\)

suy ra:  \(\widehat{BAC}=90^0\)

Nguyệt
22 tháng 7 2018 lúc 21:05

Trong 1 tam giac vuong co ti le cua 3 canh 
Đầu tiên Bình phương của cạnh huyền ,bạn bình phương tỉ số đó lên (rồi đánh số 1 nhỏ) 
Sau đó Tổng bình phương 2 cạnh còn lại rồi tính ra công lại bằng số bình phương của cạnh huyền(rồi đánh số 2) 
Từ 1 và 2 suy ra:Tổng bình phương cạnh huyền bằng tổng bình phương 2 cạnh góc vuông 
Vậy là bạn chứng minh bình thường rồi kết luận định lí của pitago đảo thành pitago.Vậy là xong rồi

Ngô Tuấn Huy
22 tháng 7 2018 lúc 21:09

Định lí Pytago đảo.

Nếu một tam giác có bình phương của một cạnh bẳng tổng bình phương các cạnh còn lại  thì tam giác đó là tam giác vuông.

∆ABC :BC2=AB2+AC2

=> \(\widehat{BAC}\)= 902

Monkey.D.Luffy
Xem chi tiết

Link đây bạn xem thử :

http://www.vnmath.com/2012/02/chung-minh-inh-li-pi-ta-go-bang-nhieu.html

Khách vãng lai đã xóa
Nguyễn Phạm Thanh Nga
Xem chi tiết
Phạm Thảo Vân
2 tháng 3 2018 lúc 19:42

Vì BC2 = AB2 + AC2 => tam giác ABC vuông ( định lý Py - ta - go đảo )

Vậy tam giác ABC vuông

Phạm Ngọc Linh
Xem chi tiết
Nguyễn Thị Ngọc Bích
30 tháng 12 2022 lúc 21:35

Định lý Pythagoras là mối liên hệ căn bản trong hình học Euclid giữa ba cạnh của một tam giác vuông. Định lý phát biểu rằng bình phương cạnh huyền bằng tổng bình phương của hai cạnh còn lại.

Tuấn Anh
30 tháng 12 2022 lúc 21:40

trong 1 tam giác vuông,bình phương cạnh huyền = tổng bình phương 2 cạnh góc vuông

VD: Tam giác ABC vuông tại A:AB^2 +AC^2=BC^2

Xem chi tiết

Trả lời : Trong toán học, định lý Pytago (còn gọi là định lý Pythagoras theo tiếng Anh) là một liên hệ căn bản trong hình học Euclid giữa ba cạnh của một tam giác vuông. Định lý phát biểu rằng bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh còn lại.

\(\downarrow\)

阮草~๖ۣۜDαɾƙ
21 tháng 5 2019 lúc 19:41

Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương hai cạnh góc vuông.

∆ABC vuông tại A.

=>  BC2=AB2+AC2

Học tốt

Nguyễn Ngọc Minh
21 tháng 5 2019 lúc 19:41

A B C

Theo định lý py-ta-go ta có : AB2+AC2=BC2

Bình phương của cạnh huyền bằng tổng bình phương hai cạnh góc phương

Trangg
Xem chi tiết

1. Định lí Pytago

Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương hai cạnh góc vuông.

∆ABC vuông tại A.

=>  BC2=AB2+AC2

2. Định lí Pytago đảo.

Nếu một tam giác có bình phương của một cạnh bẳng tổng bình phương các cạnh còn lại  thì tam giác đó là tam giác vuông.

∆ABC :BC2=AB2+AC2

=> ˆBACBAC^= 902



 

Đặng Yến Ngọc
26 tháng 11 2018 lúc 21:42

nè nè nói thật lp 6 đâu có học pytago đâu ta

mai  love N
26 tháng 11 2018 lúc 21:43

tổng của 3 góc tam giác bằng 1800

Le Xuan Huy
Xem chi tiết
Nguyễn Quang Huy
2 tháng 5 2017 lúc 20:03

Nếu tổng bình phương 2 cạnh này bằng bình phương cạnh kia thì đó là tam giác vuông

Chúc bạn học tốtbanh

Nguyễn Khánh
2 tháng 5 2017 lúc 20:14

Nếu một tam giác có bình phương của một cạnh bẳng tổng bình phương các cạnh còn lại thì tam giác đó là tam giác vuông.



Nguyễn Thanh Hà
2 tháng 5 2017 lúc 21:11

nếu trong một tam giác,có bình phương của một cạnh bằng tổng các bình phương của hai cạnh còn lại thì tam giác đó là tam giác vuông