Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Hải Đức
Xem chi tiết
nhat vota
Xem chi tiết
Lê Thanh Thưởng
Xem chi tiết
Hồ Thu Giang
12 tháng 7 2015 lúc 22:19

Đặt A=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+....+\frac{1}{1999}}\)

Xét mẫu số:

\(\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+\frac{1996}{4}+....+\frac{1}{1999}\)

=\(\left(\frac{1998}{2}+1\right)+\left(\frac{1997}{3}+1\right)+\left(\frac{1996}{4}+1\right)+....+\left(\frac{1}{1999}+1\right)+1\)

=\(\frac{2000}{2}+\frac{2000}{3}+\frac{2000}{4}+....+\frac{2000}{1999}+\frac{2000}{2000}\)

= 2000\(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{1999}+\frac{1}{2000}\right)\)

=> A = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2000}}{2000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2000}\right)}\)

=> A = \(\frac{1}{2000}\)

 

Nguyễn Ánh Ngân
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
1 tháng 8 2015 lúc 10:16

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1999}\right)\left(1-\frac{1}{2000}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{1998}{1999}.\frac{1999}{2000}=\frac{1.2.3...1998.1999}{2.3.4...1999.2000}=\frac{1}{2000}\)

Tâm Trần Hiếu
1 tháng 8 2015 lúc 10:16

\(\left(1-\frac{1}{2}\right).\left(1.\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1999}\right).\left(1-\frac{1}{2000}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{1998}{1999}.\frac{1999}{2000}\)

\(=1.\frac{1}{2000}\)

\(=\frac{1}{2000}\)

Le Ha Mai Linh
Xem chi tiết
Mai Hải Đức
Xem chi tiết
Xyz OLM
2 tháng 9 2020 lúc 17:35

Ta có Đặt B = \(\frac{1999}{1}+\frac{1998}{2}+...+\frac{1}{1999}\)(1999 số hạng)                                 

\(=\left(1+1+1+...+1\right)+\frac{1998}{2}+\frac{1997}{3}+...+\frac{1}{1999}\)(1999 số hạng 1)            

\(=1+\left(\frac{1998}{2}+1\right)+\left(\frac{1997}{3}+1\right)+...+\left(\frac{1}{1999}+1\right)\)(1998 cặp số)

 = \(\frac{2000}{2}+\frac{2000}{3}+...+\frac{2000}{1999}+\frac{2000}{2000}\)

\(2000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1999}+\frac{1}{2000}\right)\)

Khi đó \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+...+\frac{1}{1999}}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{2000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}=\frac{1}{2000}\)

Khách vãng lai đã xóa
What Coast
Xem chi tiết
Nguyễn Tuấn Minh
12 tháng 2 2016 lúc 9:45

=2666666000

Có công thức như sau

1x2+2x3+3x4+...+nx(n+1)=nx(n+1)x(n+2):3

What Coast
12 tháng 2 2016 lúc 9:45

phần sau thì sao

Nguyen Huy Minh Quan
Xem chi tiết
Hương Nguyễn
Xem chi tiết