chứng minh nha mọi người giúp mình với
a^2+b^2+c^2+d^2+1>=a+b+c+d
a^2+b^2+c^2+d^2+e^2>=a(b+c+d+e)
Cho tù giác ABCD có AB = a,BC = b,CD = c,DA = d. Chứng minh rằng :
1. S ABCD ≤ 1/4 (a + c)(b + d).
2. S ABCD ≤1/4 (a^2+ b^2+ c^2 + d^2 ).
Giúp mình với mọi người ! Cảm ơn mọi người !!!
Bài 1 cho a, b,c,d thuộc N* thỏa mãn a^2+b^2=C^2+d^2
chứng minh : a+b+c+d là hợp số
mọi người giúp mình với!
Xét \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)
\(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)
Vì a là số nguyên dương nên a, (a–1) là hai số tự nhiên liên tiếp
⇒a−1⋮2
Tương tự ta có \(b\left(b-1\right);c\left(c-1\right);d\left(d-1\right)\) đều chia hết cho 2
=> \(a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn
Lại có \(a^2+b^2=c^2+d^2\)\(\Rightarrow a^2+b^2+c^2+d^2=2\left(c^2+d^2\right)\)là số chẵn.
Do đó \(a+b+c+d\) là số chẵn mà \(a+b+c+d>2\) (Do \(a,b,c,d\in\) N*)
⇒ \(a+b+c+d\) là hợp số
Tick nha kkk 😘
1)cho a/b=c/d chứng minh rằng a.b/c.d=(a+b)^2/(c+d)^2 . ( giúp mình với nha )
2)cho a/b=b/c chứng minh rằng a^2+b^2/b^2+c^2=a/c . ( giúp mình với nha )
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)
Thay vào từng vế ta có
\(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)
\(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) => ĐPCM
a/b=c/d
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có :
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2
=> a/c.b/d= ( a+b/c+d ) mũ 2
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2
=> dpcm
Ta có a/b = c/d
=> a/c= b/d
adtccdtsbn ta có :
Chứng minh a2 + b2 + c2 + d2 +e2 > a(b+c+d+e) (với mọi a;b;c;d;e)
chứng minh \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)với mọi a,b,c,d,e
chứng minh theo cách BĐT tương đương nha bạn
cho a^2+b^2/c^2+d^2=ab/cd với a,\b,c,d khác 0 và c không bằng +-d chứng minh a/b=d/c
mọi người ơi giúp mình với
1. chứng minh rằng với mọi số nguyên a,b,c,d , tích :
( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho 12
2. chứng minh rằng số A = \(2^{2^{2n+1}}+3\) là hợp số với mọi số nguyên dương n
giúp mình nha
P = ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d )
Xét 4 số a,b,c,d khi chia cho 3, tồn tại 2 số có cùng số dư khi chia cho 3, hiệu của chúng chia hết cho 3 nên P chia hết cho 3
Xét 4 số a,b,c,d khi chia cho 4
- nếu tồn tại 2 số cùng số dư khi chia cho 4 thì hiệu của chúng chia hết cho 4, do đó P chia hết cho 4
- nếu 4 số ấy có số dư khác nhau khi chia cho 4 ( là 0,1,2,3 ) thì 2 số có dư là 0 và 2 có hiệu chia hết cho 2, 2 số có số dư là 1 và 3
có hiệu chia hết cho 2. do đó P chia hết cho 4
#)Giải :
Trong 4 số a,b,c,d có ít nhất 2 số có cùng số dư khi chia cho 3
Trong 4 số a,b,c,d : Nếu có 2 số có cùng số dư khi chia cho 4 thì hiệu hai số đó sẽ chia hết cho 4
Nếu không thì 4 số dư theo thứ tự 0,1,2,3 <=> trong 4 số a,b,c,d có hai số chẵn, hai số lẻ
Hiệu của hai số chẵn và hai số lẻ trong 4 số đó chia hết cho 2
=> Tích trên chia hết cho 3 và 4
Mà ƯCLN ( 3; 4 ) = 1 nên ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho ( 3 . 4 ) = 12
#~Will~be~Pens~#
Ta có :
\(2^{2n+1}=\left(3-1\right)^{2n+1}=BS3-1=3k+2\)
do đó :
\(A=2^{3k+2}+3=4.\left(2^3\right)^k+3=4\left(7+1\right)^k+3=BS7+7=BS7\)
Mà A > 7, vậy A là hợp số
cho\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\).Chứng minh rằng \(\dfrac{ab}{cd}\)= \(\dfrac{a^2-b^2}{c^2-d^2}\).Mình đang cần gấp ạ, mong mọi người giúp mình!
Cho \(a,b,c,d,e\ge0\) và \(a+b+c+d+e=5\)
Chứng minh:\(\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+d^2\right)\left(d^2+e^2\right)\left(e^2+a^2\right)\le\frac{729}{2}\)
Bài này em bí thật ạ,mong mọi người giải cho ạ