Cho A = 7+7^2+ 7^3 + ...+ 7^2014+ 7^2015. Chứng minh A chia hết cho 35
Chứng minh rằng:
a,5^2000+5^1998 chia hết cho 13
b,7^2016+7^2015-7^2014 chia hết cho 35
Sửa đề : ý b cm chia hết cho 55 chứ ko phải 35 nhé
a ) \(5^{2000}+5^{1998}=5^{1998}\left(5^2+1\right)=5^{1998}.26=5^{1998}.13.2⋮13\) (đpcm)
b ) \(7^{2016}+7^{2015}-7^{2014}=7^{2014}\left(7^2+7-1\right)=7^{2014}.55⋮55\) (đpcm)
Chứng minh rằng:7^2016+7^2015-7^2014 chia hết cho 55
hình như bạn viết sai đầu bài phải là 57 mới đúng
có 7^2016+7^2015+7^2014
=7^2014(7^2+7+1)
=7^2014.57
SUY RA biểu thức trên luôn chia hết cho 57
doan thi thuan ko sai đề nhé =))
\(7^{2016}+7^{2015}-7^{2014}=7^{2014}.\left(7^2+7-1\right)=7^{2014}.55⋮55\left(đpcm\right)\)
chứng minh A=-7+(-7)^2+(-7)^3+...+(-7)^2015+(-7)^2016.Chứng minh A chia hết cho 43
Cho A=1 + 7^1 + 7^1 + 7^2 + 7^3 + 7^4 +... + 7^2015
chứng minh a chia hết cho 8
BAI 1 ;CHO BIEU THUC A=1+2+2^2+2^3+...+2^101+2^102
a) chứng minh rằng A chia hết cho 3;7 và chia hết cho 21
b) tìm chữ số tận cùng của tổng trên
BÀI 2; CHO BIEU THUC B = 1+7+7^2+...+7^2014+7^2015
a) chứng minh rằng B chia hết cho 57
b) biểu thức B chia cho 7 dư bao nhiêu
c) tìm số dư khi chia B cho 49
BÀI 3;CHO BIỂU THỨC A= 1+3+3^2+3^3+...+3^x
a) rút gọn biểu thức A
b) tìm x để bieu thức A= 3280
c) với x=17. chứng minh rằng A chia hết cho 4
đ) với x = 2017. tìm số dư cho phép chia A cho 9
Chứng minh rằng 72014+72015 chia hết cho 10
Các bạn giúp mình bài này với nhé:
Câu 1:
Cho A = 7 + 73 + 75 +...+ 72013 + 72015.
Chứng minh rằng A chia hết cho 35.
Cảm ơn các bạn nha!!!!!!!
Ta có :
(+) A chia hết cho 7 vì mọi số hạng của A đều chia hết cho 7 (1)
(+) \(A=7\left(1+7^2\right)+7^5\left(1+7^2\right)+....+7^{2014}\left(1+7^2\right)\)
\(\Leftrightarrow A=7.50+7^5.50+....+7^{2014}.50\)
<=> A chia hết cho 5 (2)
Mà (5;7)=1 (3)
Từ (1) ; (2) và 3
=> A chia hết cho 5.7 = 35
CHO :A=7+7^3+7^5+...+7^1999
CHỨNG MINH RẰNG A CHIA HẾT CHO 35
Ta có :
A = 7 + 73 + 75 + 77 + ... + 71997 + 71999
= (7 + 73) + (75 + 77) + ... + (71997 + 71999)
= 7 (1 + 72) + 75 (1 + 72) + ... + 71997 (1 + 72)
= 7 . 50 + 75 . 50 + ... + 71997 . 50
= 350 + 74 . 350 + ... + 71996 . 350
= 35 . 10 + 74 . 35 . 10 + ... + 71996 . 35 . 10
= 35 (10 + 74 . 10 + ... + 71996 . 10) chia hết cho 35
Vậy A chia hết cho 35 (ĐPCM).
Đáp án của tôi cũng giống như bạn Trần Hùng Minh vậy .
A = 7+7^3+...+7^1999
A = 7.(1+49)+...+7^1997.(1+49)
A = 7.50+...+7^1997.50
A = 350+...+7^1996.7.50
A = 350+...+7^1996.350
A = 350.(1+...+7^1996) = 35.10.(1+...+7^1996) => A chia hết cho 35
Cho A=7+7^3+7^5+.......................7^999
Chứng minh rằng A chia hết cho 35
A=7+7^3+7^5+..............+7^999
=[7+7^3]+[7^5+7^7]+..............+[7^997+7^999]
=7[1+7^2]+7^5[1+7^2]+..............+7^997[1+7^2]
=7[1+49]+7^5[1+49]+................7^997[1+49]
=7*50+7^5*50+...................+7^997*50
=350+7^4*7*50+.................+7^996*7*50
=350+7^4*350+................+7^996*350
=350[1+7^4+................+7^996]
vì 350 chia hết cho 35 nên A chia hết cho 35
\(_{^{ }^{ }^{ }^{ }^{ }^{ }^{ }^{ }^{ }\veebar\circledcircℕ^∗\Phi}\)