cmr 2 trung tuyến kẻ từ B và C của tam giác ABC vuuong goc với nhau khi và chỉ khi có hệ thức sau cotA = 2(cotB+cotC)
Cho tâm giác ABC nhọn, có các trung tuyến BM, CN vuông góc với nhau.
a) Cmr: cotB + cotC >= 2/3
b) Tìm hệ thức thể hiện mối quan hệ 3 cạnh của tam giác
Theo bạn thì câu trả lời sẽ là bao nhiêu? Cách giải thứ nhất là cộng kết quả hàng trên với số đầu hàng dưới lại, chúng ta sẽ có kết quả hàng dưới (1 + 4 = 5, 5 + 2 + 5 = 12,...), cứ thế, ta sẽ có con số cuối cùng là 40.
Tuy nhiên vẫn còn một cách giải khác, đó là nhân số thứ hai trong phép tính với số đầu rồi tiếp tục cộng thêm số đầu (4 x 1 + 1 = 5, 5 x 2 + 2 = 12...), nếu tính theo cách này thì đáp án cuối sẽ là 96.
làm bừa thui,ai trên 11 điểm tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Cho tam giác ABC, gọi BM và CN lần lượt là các đường trung tuyến sao cho BM vuông góc với CN. Chứng minh cotA = 2 (cotB + cotC)
Cho tam giác ABC, gọi BM và CN lần lượt là các đường trung tuyến sao cho BM vuông góc với CN. Chứng minh cotA = 2 (cotB+cotC)
Giúp mình với!!!!!
Cho tam giác ABC, gọi BM và CN lần lượt là các đường trung tuyến sao cho BM vuông góc với CN. Chứng minh cotA = 2 (cotB+cotC)
Giúp mình với!!!!!
1. Cho tam giác ABC, gọi BM và CN lần lượt là các đường trung tuyến sao cho BM vuông góc với CN. Chứng minh cotA = 2 (cotB + cotC)
2. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông cân tại A có H là trung điểm của BC, D là hình chiếu vuông góc của H trên AC và M là trung điểm HD. Đường thẳng BD đi qua E(0;4) và AC đi qua điểm F(-1;5). Tìm tọa độ các đỉnh A, B, C biết đường thẳng AM có phương trình x - 3y + 14 = 0 và A có hoành độ âm
cho tam giác abc. Cmr các đường trung tuyến kẻ từ B và C vuông góc với nhau khi và chỉ khi b^2 + c^2=5a^2
Gọi hai trung tuyến kẻ từ B, C là BM và CN, chúng cắt nhau tại O
Bây giờ ta sẽ chứng minh rằng : Nếu hai trung tuyến đó vuông góc thì b^2 + c^2 = 5a^2 , từ đó suy ra điều ngược lại (vì mệnh đề này đúng với thuận và đảo)
Gỉa sử BM vuông góc với CN tại O
Ta đặt OM = x => OB = 2x và => OC =2y
AB^2/4 + AC^2/4= NB^2 + MC^2 = ON^2 + OB^2 + OM^2 + OC^2 = 5(x^2 + y^2)
=> AB^2 + AC^2 = 20(x^2 + y^2)
Mà BC^2 = OC^2 + OB^2 = 4(x^2 + y^2)
Suy ra : AB^2 + AC^2 = 5.4(x^2 + y^2) = 5BC^2 hay b^2 + c^2 = 5a^2
Vậy ta có điều ngược lại là nếu b^2 + c^2 = 5a^2 thì hai trung tuyến vuông góc
cho tam giác ABC nhọn. cmr cotA+cotB+cotC=AB^2+AC^2+BC^2/4S
Cho tam giác ABC có góc A và B nhọn, các đường trung tuyến BM và CN vuông góc với nhau .
CMR: cotB + cotC\(\ge\)\(\frac{2}{3}\)
cho tam giác ABC . BM,CN lần lượt là accs đường trung tuyến . CMR các điều sau là tương đương
1) BM vuông góc với CN
2) AC2 + AB2= 5BC2
3) cotA= 2(cotB + cotC)