Cho tam giác ABC nhọn. AB < AC.Đường cao AH. Điểm D nằm ngoài tam giác ABC sao cho AD vuông góc với AB và AD = AB. Điểm E cũng nằm ngoài tam giác ABC, AE vuông góc với AC, AE = AC. AH cắt DE tại I. CMR: I là trung điểm của DE.
cho tam giác ABC về phía ngoài của tam giác ta kẻ Ax vuông góc vơi AB, Ay vuông góc với AC. Trên Ax lấy điểm D sao cho AD=AB, trên Ay lấy điểm E sao cho AE=AC. Nối D với E/ Kẻ AH vuông góc với BC tại H. đường thẳng AH cắt DE tại I. Chứng minh I là trung điểm của DE
cho tam giác abc về phía ngoài của tam giác ta kẻ ax vuông góc vơi ab, ay vuông góc với ac. trên ax lấy điểm d sao cho ad=ab, trên ay lấy điểm e sao cho ae=ac. nối d với e. Gọi m là trung điểm của DE. kẻ ah cắt bc tại h. chứng minh ah vuông góc với bc
Cho tam giác nhọn ABC . Vẽ AD vuông góc AB va AD=AB ( D và C nằm khác phía đối với AB ) . Vẽ AE vuông góc AC và AE=AC ( E và B nắm khác phía đối với AC ) Vẽ AH vuông góc BC ( H thuộc BC ) . Kẻ đường thẳng từ D và E cắt AH lần lượt tại I và K . Gọi M là giao điểm của DE và AH
a) CM tam giác ABH = DAI
b ) CM tam giác ACH = EAK
c ) CM MD = ME
nhanh nhanh nha các bạn mình cần gấp
cho tam giác ABC vuông tại A ( AB < AC) đường cao AH. Trên AC lấy E sao cho AH = AE. Từ E kẻ đường vuông góc với AC, cắt BC tại D
a,CMR tam giác AHD = tam giác AED
b, so sánh DH và DC
c,Gọi K là giao điểm của DE và AH. CM AD vuông góc vơi KC
a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
AH=AE
=>ΔAHD=ΔAED
b: DH=DE
DE<DC
=>DH<DC
c: Xét ΔAKC có
CH,KE là đường cao
CH căt KE tại D
=>D là trực tâm
=>AD vuông góc KC
cho tam giác ABC có A là góc nhọn. Bên ngoài tam giác vẽ tia Ax vuông góc với BC. Trên tia Ax lấy điểm D sao cho AD bằng AB . Vẽ tia Ay vuông góc với AC , trên tia Ay lấy điểm E sao cho AE bằng AC. Gọi I là trung điểm của DE, IA cắt BC tại H. cmr AH vuông góc với BC
Cho tam giác ABC có ba góc nhọn.Vẽ đoạn thẳng AD vuông góc với AB,AD=AB( D và C nằm về hai phía đối với AB).Vẽ đoạn thẳng AE vuông góc với AC,AE=AC(E và B nằm về hai phía đối với AC ).Kẻ AH vuông góc với đường thẳng BC tại H.Kẻ DI và EK cùng vuông góc với đường thẳng AH(I và K thuộc đường thẳng AH) .CM rằng: DI=EK, DE và KI cắt nhau tại trung điểm của mỗi đường
cho tam giác abc vuông tại A (AB<AC) ke Ah vuông với bc tại h trê cạnh ac lấy điểm d sao cho ad=ah gọi e là trung điểm của hd tia ae cắt bc tai f cm a) tam giác ahe= tam giác ade và ae vuông tại hd b) tam giác ahf = tam giác adf c) góc dfc= góc abc
cho tam giác abc vuông tại A (AB<AC) ke Ah vuông với bc tại h trê cạnh ac lấy điểm d sao cho ad=ah gọi e là trung điểm của hd tia ae cắt bc tai f cm a) tam giác ahe= tam giác ade và ae vuông tại hd b) tam giác ahf = tam giác adf c) góc dfc= góc abc
Cho tam giác ABC. Vẽ ở phía ngoài tam giác ABC các tam giác vuông tại A và ABD, ACE có AB = AD, AC = AE. Kẻ AH vuông góc với BC, DM vuông góc với AH, EN vuông góc với AH. Chứng minh rằng: MN đi qua trung điểm của DE
Ta có: ∠(HAC) +∠(CAE) +∠(EAN) =180o(kề bù)
Mà ∠(CAE) =90o⇒∠(HAC) +∠(EAN) =90o (4)
Trong tam giác vuông AHC, ta có:
∠(AHC) =90o⇒∠(HAC) +∠(HCA) =90o (5)
Từ (4) và (5) suy ra: ∠(HCA) =∠(EAN) ̂
Xét hai tam giác vuông AHC và ENA, ta có:
∠(AHC) =∠(ENA) =90o
AC = AE (gt)
∠(HCA) =∠(EAN) ( chứng minh trên)
Suy ra : ΔAHC= ΔENA(cạnh huyền, góc nhọn)
Vậy AH = EN (hai cạnh tương ứng)
Từ (3) và (6) suy ra: DM = EN
Vì DM ⊥ AH và EN ⊥ AH (giả thiết) nên DM // EN (hai đường thẳng cùng vuông góc với đường thẳng thứ ba)
Gọi O là giao điểm của MN và DE
Xét hai tam giác vuông DMO và ENO, ta có:
∠(DMO) =∠(ENO) =90o
DM= EN (chứng minh trên)
∠(MDO) =∠(NEO)(so le trong)
Suy ra : ΔDMO= ΔENO(g.c.g)
Do đó: DO = OE ( hai cạnh tương ứng).
Vậy MN đi qua trung điểm của DE
cho mk hỏi tam giac vông thì vuông tai đâu vậy chứ đề vạy thì mk chịu thôi