Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
:vvv
Xem chi tiết
Lấp La Lấp Lánh
10 tháng 10 2021 lúc 11:19

Ta có: \(x+y=z\Rightarrow x=z-y\)

\(A=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{x^2y^2+y^2z^2+x^2z^2}{x^2y^2z^2}}\)

\(=\sqrt{\dfrac{\left(z-y\right)^2y^2+y^2z^2+\left(z-y\right)^2z^2}{x^2y^2z^2}}\)

\(=\sqrt{\dfrac{y^4+y^2z^2-2y^3z+y^2z^2+z^4+y^2z^2-2yz^3}{x^2y^2z^2}}\)

\(=\sqrt{\dfrac{\left(y^4+2y^2z^2+z^4\right)-2yz\left(y^2+z^2\right)+y^2z^2}{x^2y^2z^2}}\)

\(=\sqrt{\dfrac{\left(y^2+z^2\right)^2-2yz\left(y^2+z^2\right)+y^2z^2}{x^2y^2z^2}}\)

\(=\sqrt{\dfrac{\left(y^2+z^2-yz\right)^2}{x^2y^2z^2}}=\left|\dfrac{y^2+z^2-yz}{xyz}\right|\)

Là một số hữu tỉ do x,y,z là số hữu tỉ

Hoàng Anh
Xem chi tiết
Nguyễn Đình Dũng
1 tháng 10 2016 lúc 16:58

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{2x+y+2z}{x+y+3z}=\frac{2x+2y+z}{3x+y+z}=\frac{x+2y+2z}{x+3y+z}=\frac{2x+y+2z+2x+2y+z+x+2y+2z}{x+y+3z+3x+y+z+x+3y+z}=\frac{5x+5y+5z}{5x+5y+5z}=1\)

Vậy x=y=z

Bùi Việt Anh
Xem chi tiết
Bùi Việt Anh
Xem chi tiết
Lê Huy Nhất
12 tháng 10 2019 lúc 16:27

A=12345678915

Khổng Minh Ái Châu
Xem chi tiết
Lương Thị Vân Anh
2 tháng 10 2023 lúc 17:24

Ta có ( x - 3 )2 + ( y - 4 )2 + ( x2 - xz )2020 = 0

Vì ( x - 3 )2 ≥ 0 với ∀x

    ( y - 4 )2 ≥ 0 với ∀y

    ( x2 - xz )2020 ≥ 0 với ∀x; ∀z

⇒ ( x - 3 )2 + ( y - 4 )2 + ( x2 - xz )2020 ≥ 0

Dấu " = " xảy ra khi

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-4\right)^2=0\\\left(x^2-xz\right)^{2020}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-3=0\\y-4=0\\x^2-xz=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=3\end{matrix}\right.\)

Vậy x = 3; y = 4; z = 3

Khổng Minh Ái Châu
2 tháng 10 2023 lúc 19:14

em cảm ơn

 

Nguyễn tiến Thịnh
Xem chi tiết
Vương Quỳnh Chi
Xem chi tiết
Nguyễn Thị Minh Ánh
Xem chi tiết
Nguyễn kim ngân
Xem chi tiết