Chứng minh 2√2(√3-2) + (1+2√2)^2 - 2√6 = 9
S=1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+...+1/9^2, chứng minh 2/5<S<8/9
Ta có:\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)
\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\)
Lại có \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)
\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
Mà \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{2}{5}\)
Vậy \(\frac{2}{5}< S< \frac{8}{9}\)
S< 1/1.2+1/2.3+1/3.4+...+1/8.9 = 1/1-1/2+1/2-1/3+1/3-1/4+...+1/8-1/9=1-1/9=8/9
=> S < 8/9
S> 1/2.3+1/3.4+1/4.5+...+1/9.10=1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10=1/2-1/10=4/10=2/5
=> S > 2/5
Đs: 2/5 < S < 8/9
@Nguyễn Huy Thắng Đề k sai, mình chứng minh được rồi -.-
chứng minh (1+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10+2^11) chia het cho 9
Chứng minh:
\(\dfrac{1}{3^2}+\dfrac{1}{6^2}+\dfrac{1}{9^2}+...+\dfrac{1}{2003^2}< \dfrac{1}{5}\)
chứng minh (1+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9) chia hết cho 3
Đặt \(A=1+2^2+2^3+...+2^8+2^9\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^8+2^9\right)\)
\(=3+2^2.\left(1+2\right)+...+2^8.\left(1+2\right)\)
\(=3+2^2.3+...+2^8.3\)
\(=3.\left(1+2^2+...+2^8\right)⋮3\)
\(\Rightarrow A⋮3\)
Cho A= 1+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10+2^11. Chứng minh rằng A chia hết cho 9
*987435879876********-=-==-*9*-*==*87866544
chứng minh
\(2\sqrt{2}\left(2-3\sqrt{3}\right)+\left(1-2\sqrt{2}\right)^2+6\sqrt{6}=9\)
VT = \(2\sqrt{2}\left(2-3\sqrt{3}\right)+\left(1-2\sqrt{2}\right)^2+6\sqrt{6}\)
\(=4\sqrt{2}-6\sqrt{6}+1-4\sqrt{2}+8+6\sqrt{6}=9\)=VP (đpcm)
Cho S=1+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9. Hãy chứng minh S chia hết cho 3.
S=(1+2)+(2^2+2^3)+(2^4+2^5)+(2^6+2^7)+(2^8+2^9)
=1.(1+2)+2^2.(1+2)+2^4.(1+2)+2^6.(1+2)+2^8.(1+2)
=1.3+2^2.3+2^4.3+2^6.3+2^8.3
=3.(1+2^2+2^4+2^6+2^8) chia hết cho 3
S=1+2+2^2+2^3+2^4+2^5+2^6+2^7
S= (1+2) + (2^2+2^3) + (2^4+2^5) + (2^6+2^7)
S=3 + 3.4 + 3.16 + 3.64
S=255
Vì 255 chia hết cho 3
=> S sẽ chia hết cho 3
Người lạ ơi bố thí cho tôi ^_^
\(S\) = 1 + 2 + 22+ 23 + 24 + 25 + 26 + 27 + 28 + 29
\(\Rightarrow\)\(S\)= 20 + 21 + 22+ 23 + 24 + 25 + 26 + 27 + 28 + 29
\(\Rightarrow\)\(S\)= ( 20 + 21 ) + ( 22+ 23) + ( 24 + 25 ) + ( 26 + 27 ) + ( 28 + 29 )
\(\Rightarrow\) \(S\)= 20 . ( 20 + 21 ) + 22 . ( 20 + 21 ) + 24 . ( 20 + 21 ) + 26 . ( 20 + 21 ) + 28 . ( 20 + 21 )
\(\Rightarrow\)\(S\)= 20 . 3 + 22 . 3 + 24 . 3 + 26 . 3 + 28 . 3
\(\Rightarrow\)\(S\)= 3 . ( 20 + 22 + 24 + 26 + 28 ) \(⋮\)3 ( đpcm )
Chứng minh rằng : (1+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10) chia hết cho 7