cho 3 số dương a,b,c thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\) tìm GTLN của M=abc
cho a,b,c là các số thực dương thỏa mãn abc=1 Tìm GTLN của \(P=\frac{1}{a+2b+3}+\frac{1}{b+2c+3}+\frac{1}{c+2a+3}\)
Đặt \(a=x^2;b=y^2;c=z^2\)khi đó ta được xyz=1 và biểu thức P viết được thành
\(P=\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2x^2+3}+\frac{1}{z^2+2x^2+3}\)
Ta có \(x^2+y^2\ge2xy;y^2+1\ge2y\Rightarrow x^2+2y^2+3\ge2\left(xy+y+1\right)\)
Do đó ta được \(\frac{1}{x^2+2y^2+3}\le\frac{1}{2}\cdot\frac{1}{xy+y+1}\)
Chứng minh tương tự ta có:
\(\frac{1}{y^2+2z^2+3}\le\frac{1}{2}\cdot\frac{1}{yz+z+1};\frac{1}{z^2+2x^2+3}\le\frac{1}{2}\cdot\frac{1}{zx+z+1}\)
Cộng các vế BĐT trên ta được
\(P\le\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)
Ta cần chứng minh \(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+a+1}=1\)
Do xyz=1 nên ta được
\(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}=\frac{zx}{z+1+zx}+\frac{x}{1+zx+z}+\frac{1}{zx+x+1}=1\)
Từ đó ta được
\(P\le\frac{1}{2}\). Dấu "=" xảy ra <=> a=b=c=1
Cho 3 số dương a,b,c thỏa mãn abc =1. Tìm GTLN của biểu thức:
\(P=\frac{1}{1+a^3+b^3}+\frac{1}{1+b^3+c^3}+\frac{1}{1+c^3+a^3}\)
theo bđt cauchy-schwarz ta có \(P\ge\frac{\left(1+1+1\right)^2}{3+2\left(a^3+b^3+c^3\right)}=\frac{9}{3+2\left(a^3+b^3+c^3\right)}\)
Mà\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3=3abc}\)\(\Rightarrow P\ge\frac{9}{3+2\cdot3abc}=\frac{9}{3+6}=1\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Vậy \(P_{max}=1\Leftrightarrow a=b=c=1\)
Sorry mình viết nhầm nha \(3\sqrt[3]{a^3b^3c^3}=3abc\)mới đúng nha
Nguyễn Gia Huy làm lộn hết dấu rồi??GTLN???
1. cho 3 số dương a,b,c thỏa mãn : a2+b2+c2=\(\frac{5}{3}\)Chứng minh: \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
2. Tìm GTLN của M=\(\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
Ta có :(a+b-c)2 \(\ge\) 0
<=>a2+b2+c2 \(\ge\) 2(bc-ab+ac)
<=>\(\frac{5}{3}\ge\) 2(bc-ab+ac)
<=>bc+ac-ab \(\le\frac{5}{6}< 1\)
<=>\(\frac{bc+ac-ab}{abc}< \frac{1}{abc}\) (vì a,b,c>0 nên chia cả 2 vế cho abc)
<=>\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< 1\) (đpcm)
Cho a,b,c dương thỏa mãn abc=1. Tìm GTLN của biểu thức A= \(\frac{1}{a^2+2b+3}+\frac{1}{b^2+2c+3}+\frac{1}{c^2+2a+3}\)
Cho a,b,c là các số thực dương thỏa mãn \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge2\)
Tìm GTLN của biểu thức A = abc
Lớn hơn hoặc bằng hay là bằng?
\(\frac{1}{a+1}\ge\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)
tương tự rồi nhân theo vế thôi nhé đệ =))
Cho a,b,claf 3 số dương thỏa mãn điều kiện \(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{a+c+1}=2\)
Tìm GTLN của tích (a+b)(b+c)(c+a)
Theo đề bài thì ta có:
\(\frac{1}{a+b+1}=1-\frac{1}{b+c+1}+1-\frac{1}{c+a+1}=\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\)
\(\ge2.\sqrt{\frac{\left(b+c\right)\left(c+a\right)}{\left(b+c+1\right)\left(c+a+1\right)}}\left(1\right)\)
Tương tự ta có:
\(\hept{\begin{cases}\frac{1}{b+c+1}\ge2.\sqrt{\frac{\left(a+b\right)\left(c+a\right)}{\left(a+b+1\right)\left(c+a+1\right)}1}\left(2\right)\\\frac{1}{c+a+1}\ge2.\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{\left(a+b+1\right)\left(b+c+1\right)}}\left(3\right)\end{cases}}\)
Nhân (1), (2), (3) vế theo vế ta được
\(\frac{1}{a+b+1}.\frac{1}{b+c+1}.\frac{1}{c+a+1}\ge8.\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{1}{8}\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{4}\)
1. cho a,b,c là 3 số dương thỏa mãn abc=1 . CMR:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
2. tìm GTLN của biểu thức: \(N=\frac{a}{bcd+1}+\frac{b}{cda+1}+\frac{c}{dab+1}+\frac{d}{abc+1}\)
Cho a,b,c là 3 số nguyên dương thỏa mãn:
\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{a+c+1}=2\)
Tìm GTLN của (a+b)(b+c)(a+c)
1. Cho a,b,c thực dương thỏa mãn: abc=1
Tìm GTLN:
A= \(\frac{a}{b^4+c^4+a}+\frac{b}{a^4+c^4+b}+\frac{c}{a^4+b^4+c}\)
2. Cho a,b,c thực dương thỏa mãn: abc= a+b+c+2
Tìm max:
P= \(\frac{1}{\sqrt{a^2+b^2}}+\frac{1}{\sqrt{b^2+c^2}}+\frac{1}{\sqrt{a^2+c^2}}\)
\(b^4+c^4-bc\left(b^2+c^2\right)=\left(b^2+bc+c^2\right)\left(b-c\right)^2\)
\(\Rightarrow b^4+c^4\ge bc\left(b^2+c^2\right)\)
Tương tự\(\Rightarrow\Sigma_{cyc}\frac{a}{a+b^4+c^4}\le\Sigma_{cyc}\frac{a}{a+bc\left(b^2+c^2\right)}=\Sigma_{cyc}\frac{a}{bc\left(a^2+b^2+c^2\right)}=\frac{1}{a^2+b^2+c^2}\Sigma_{cyc}\frac{a}{bc}\)
\(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}=\frac{a^2+b^2+c^2}{abc}=a^2+b^2+c^2\)
\(\Rightarrow\frac{1}{a^2+b^2+c^2}\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)=1\)
oke rồi he
@Nub :v
Áp dụng Bunhiacopski ta dễ có:
\(\frac{a}{b^4+c^4+a}=\frac{a\left(1+1+a^3\right)}{\left(b^4+c^4+a\right)\left(1+1+a^3\right)}\le\frac{a^4+2a}{\left(a^2+b^2+c^2\right)^2}\)
Tương tự:
\(\frac{b}{a^4+c^4+b}\le\frac{b^4+2b}{\left(a^2+b^2+c^2\right)^2};\frac{c}{a^4+b^4+c}\le\frac{c^4+2c}{\left(a^2+b^2+c^2\right)^2}\)
Cộng lại:
\(A\le\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\)
Ta đi chứng minh:
\(\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\le1\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)
Cái này luôn đúng theo Cauchy
Đẳng thức xảy ra tại a=b=c=1