CMR:nếu 8p-1 và p là số nguyên tố thì 8p+1 là hợp số
CMR:Nếu 8p-1 và p là các số nguyên tố thì 8p+1 là hợp số
CMR:Nếu 8p-1 và p là các số nguyên tố thì 8p+1 là hợp số.
p là số nguyên tố thì p = 3k + 1 hoặc p = 3k + 2 (k \(\in\) N)
- Nếu p = 3k + 1 thì 8p - 1 = 8.(3k + 1) - 1 = 24k + 8 - 1 = 24k + 7 là số nguyên tố, loại
- Nếu p = 3k + 2 thì 8p - 1 = 8.(3k + 2) - 2 = 24k + 16 - 2 = 24k + 14 = 2.(12k + 7) chia hết cho 2 nên không thể là số nguyên tố
Vậy ta chọn p = 3k + 1. Khi đó 8p + 1 = 8.(3k + 2) + 1 = 24k + 16 + 1 = 24k + 17 là số nguyên tố (đpcm)
Bài 1: 1 số nguyên tố chia cho 30 có số dư là r, tìm r biết r không phải là số nguyên tố
Bài 2: CMR:nếu 8p-1 và p là số nguyên tố thì 8p.r là hợp số
Bài 3: cho p và p+4 là các số ngyên tố(p>3) CM: r.p+2 là hợp số
với p là số nguyên tố và là một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số thứ ba là số nguyên tố hay hợp số
Với p = 3, ta có:
⦁ 8p – 1 = 23 là số nguyên tố;
⦁ 8p + 1 = 25 không phải là số nguyên tố.
Với p ≠ 3, ta có: p không chia hết cho 3 nên 8p không chia hết cho 3.
Ta có 8p(8p – 1)(8p + 1) là tích của 3 số tự nhiên liên tiếp.
Suy ra 8p(8p – 1)(8p + 1) chia hết cho 3.
Lại có 8p – 1 > 3 (p ∈ ℕ).
Suy ra 8p – 1 không chia hết cho 3.
Do đó 8p + 1 chia hết cho 3.
Mà 8p + 1 > 3, p ∈ ℕ.
Suy ra 8p + 1 là hợp số.
Vậy 8p + 1 là hợp số; 8p - 1 là số nguyên tố.
nếu p là số nguyên tố thì 1 trong 2 số 8p-1 và 8p+1 là số nguyên tố thí số còn lai là hợp số hay số nguyên tố
C/M :nếu 8p -1 và p là số nguyên tố thì 8p+1 là hợp số
Anh chị ơi giúp em với ạ! Em cảm ơn anh chị.
CHỨNG TỎ RẰNG P LÀ MỘT SỐ NGUYÊN TỐ LỚN HƠN 3 VÀ 8P-1 CŨNG LÀ SỐ NGUYÊN TỐ THÌ 8P+1 LÀ HỢP SỐ
Nếu p = 3 suy ra 8p - 1 = 23 là số nguyên tố ; 8p + 1 = 25 là hợp số ( thoả mãn đề bài )
Nếu p \(\ne\)3 ta có :
p - 1 ; p ; p + 1 là ba số nguyên liên tiếp nên phải có một số chia hết cho 3
Mà p \(\ne\)3 nên p - 1 hoặc p + 1 chia hết cho 3 suy ra (p-1).(p+1) \(⋮\)3
Suy ra : (8p-1).(8p+1) = 64\(p^2\)- 1 = 63\(p^2\)+ \(p^2\)- 1 = 3.21.\(p^2\)+ (p-1).(p+1) \(⋮\)3
Vậy 8p+1 là hợp số
Với p là số nguyên tố và một trong hai số 8p - 1 ; 8p + 1 là số nguyên tố . Thì số còn lại là số nguyên tố hay hợp số ?
Xét ba số liên tiếp \(8p-1;8p;8p+1\), chắc chắn ta tìm được một số chia hết cho 3
+Giả sử nếu chọn 8p-1 là số nguyên tố thì \(8p-1>3\) và \(8p-1\)không chia hết cho 3
Do vậy tồn tại một trong hai số còn lại là 8p và 8p+1 chia hết cho 3 . Vậy thì tích \(8p\left(8p+1\right)\) cũng chia hết cho 3
Nhưng từ giả thiết , ta lại có p là số nguyên tố, do vậy 8p không thể chia hết cho 3. Vậy 8p+1 chia hết cho 3 => 8p+1 là hợp số
+Giả sử với trường hợp 8p+1 là số nguyên tố thì lập luận tương tự ta cũng suy ra 8p-1 là hợp số.
Vậy ........................................
...ko bao giờ có 8p là số nguyên tố, vì Ư(8p)={1,2,...,8,...,p,....,8p}
CMR : nếu 8p-1 và p là số nguyên tố thì 8p+1 là hợp số
p = 2 thì 8p - 1 = 15 => loại
p = 3 thì 8p - 1 = 23 ; 8p+1=25 là hợp số => chọn
p > 3 thì p không chia hết cho 3
p chia 3 dư 2 thì 8p - 1 chia hết cho 3 nên loại
=> p chia 3 dư 1 => 8p + 1 chia hết cho 3 ; là hợp số