Tìm x,y nguyên dương sao cho
6xy+10x+9y=2
tìm x,y nguyên dương sao cho
6xy+10x+9y=2
Ta có: \(6xy+10x+9y-2=0\Leftrightarrow2x\left(3y+5\right)+9y+15-17=0\)
\(\Leftrightarrow2x\left(3y+5\right)+3\left(3y+5\right)=17\Leftrightarrow\left(2x+3\right)\left(3y+5\right)=17\)
Ta có bảng sau:
Vậy không tồn tại x, y nguyên dương thỏa mãn bài toán.
Tìm x,y nguyên dương sao cho
a)6xy+10x+9y=2
b)2xy+9x-11y=21
b)3xy-2x-5y=7
tìm x,y nguyên dương sao cho
a)6xy+10x+9y=2
b)2xy+9x-11y=21
c)3xy-2x-5y=7
ai giúp mk đk câu nào thì cứ giúp nha.
a)\(\left(2x+3\right)\left(3y+5\right)=17\)
b) \(\left(2y+9\right)\left(11-2x\right)=57\)
c) \(\left(3x-5\right)\left(3y-2\right)=31\)
Lần lượt xét từng trường hợp cho mỗi câu .
Bài1: Tìm x,y nguyên sao cho
a) x(y-3)=15 b)xy-2y+3(x-2)=7 c)xy-3x+y=15
Bai2: Tìm x,y nguyên dương sao cho
a)6xy+10x+9y=2 b)2xy+9x-11y=21 c)3xy-2x-5y=7
tìm x, y là số nguyên biết:
a)6xy+9y+10x=2
b)3xy-2x-5y=6
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Tìm tất cả cặp số (x;y) nguyên dương thỏa mãn (10x+y)^2=(x+y)^3
Tìm các số nguyên dương x,y thỏa mãn (x2-9y2)2=33y+16
Ta có: \(\left(x^2-9y^2\right)^2\ge\left(x+3y\right)^2>9y^2+6y\)
\(\Rightarrow y< 4\)
\(\Rightarrow y\in\left\{1;2;3\right\}\)
Vậy nghiệm nguyên dương \(x,y\)là \(\left(4;1\right)\)
Sao lại suy ra đc y<4 vậy bn
Tìm nghiệm nguyên dương x , y , z biết x + y + z > 11 và 8x + 9y + 10z = 100
100 chia 9 dư 1 => 8x+10z chia 9 dư 1,chẵn (vì 9y chia hết cho 9)(1)
mà x+y+z>11
=> 8x+8y+8z>88
=> y+2z<12=> z<6=>x+y<5(2)
tương tự:
9x+9y+9z<99
=> z-x<1
=> z<1+x(3)
để thoả mãn cả (1) (2) và (3) thì:
x=4,y=2,z=5
x=3,y=z=4
x=2,y=6,z=3
x=1,y=8,z=2
x=9,y=2,z=1