Biết số tự nhiên x chia cho 9 dư 5.Chứng minh rằng x2 chia cho 9 dư 7
2. Chứng minh rằng với mọi số tự nhiên n thì 7n+10 và 5n+7 là hai số nguyên tố cùng nhau
3. Tìm x : a, x chia hết cho 4;7;8 và x nhỏ nhất . B, x chia hết cho 10,15 và x <100
5. Tìm số tự nhiên có 3 chữ số biết số đó khi chia cho 6 thì dư 5, chia cho 8 thì dư 7 chia cho 9 dư 8
2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d
=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d
=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d 1
chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
Vậy số tự nhiên cần tìm là 680
Bài 1.Tìm x biết: a,3.(x + 5) = x – 7 b,|x + 2| - 14 = - 9 c,(6x + 1) chia hết (3x - 1) với x nguyên. Bài 2.Chứng minh rằng: a + (– a – b + c) – ( – b – c + 1) = 2c – 1 Bài 3.a. Chứng minh rằng: 2n + 3 và 4n + 8 nguyên tố cùng nhau với mọi số tự nhiên n. b. Minh nghĩ ra một số tự nhiên có 2 chữ số mà số đó chia 5 dư 4, chia 7 dư 2, chia 9 dư 7. Hỏi Minh nghĩ đến số nào?
Bài 1:
a) \(3\left(x+5\right)=x-7\)
\(\Leftrightarrow3x+15=x-7\)
\(\Leftrightarrow3x+15-x=-7\)
\(\Leftrightarrow2x+15=-7\)
\(\Leftrightarrow2x=-22\)
\(\Leftrightarrow x=-11\)
Vậy \(x=-11\)
Bài 2:
\(\left|x+2\right|-14=-9\)
\(\Leftrightarrow\left|x+2\right|=5\)
Chia 2 trường hợp:
\(\Leftrightarrow\orbr{\begin{cases}x+2=5\\x+2=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-7\end{cases}}}\)
Vậy \(x\in\left\{3;-7\right\}\)
Hơi vội, sai thì thôi nhé!
Bài 5: Chia số tự nhiên a cho 9 được số dư là 4. Chia số tự nhiên b cho 9 được số dư là 5. Chia số tự nhiên c cho 9 được số dư là 8.
a) Chứng tỏ rằng a + b chia hết cho 9; b) Tìm số dư khi chia b + c cho 9
a) Ta có: a chia 9 dư 4 => đặt a =9n+4
b chia 9 dư 5 => đặt b=9h+5
=> a+b = 9n+4+9h+5 = 9(n+h+1) chia hết cho 9
b) Ta có: c chia 9 dư 8 => đặt c=9m+8
=> b+c = 9h+5+9m+8 = 9(h+m+1) +4
=> b+c chia 9 dư 4
Tìm số tự nhiên nhỏ nhất biết rằng nó chia cho 5 dư 3, chia cho 7 dư 5 và chia cho 9 dư 7?
Chia số tự nhiên a cho 9 được số dư là 4. Chia số tự nhiên b cho 9 được số dư là 5. Chia số tự nhiên c cho 9 được số dư là 8.
a) Chứng tỏ rằng a + b chia hết cho 9
b) Tìm số dư khi chia b + c cho 9
a) Ta có: a chia 9 dư 4 => đặt a =9k+4
b chia 9 dư 5 => đặt b=9t+5
=> a+b = 9k+4+9t+5 = 9(k+t+1) chia hết cho 9
b) Ta có: c chia 9 dư 8 => đặt c=9n+8
=> b+c = 9t+5+9n+8 = 9(t+n+1) +4
=> b+c chia 9 dư 4
Câu a: vì tổng của 2 số dư của a+b=9 nên t có : a+b chia hết cho 9 và 4+5 chia hết cho 9 nên suy ra a+b chia hết cho 9 b: dư4
chứng tỏ rằng tổng của 5 số tự nhiên liên tiếp là 1 số chia hết cho 5
tìm số tự nhiên n biết 67:n dư 7 và 93 chia cho n dư 9
5 số tự nhiên đó có dạng: a + a+1+a+2+a+3+a+4 = a x 5 + 10 = 5 x (a+2)
Vậy tổng số số tự nhiên liên tiếp luôn luôn chia hết cho 5
bài 1.Tìm số tự nhiên x biết rằng: x + 15 chia hết cho x + 2.
bài 2. Cho C= 1 + 3 + 32 + 33 +... + 311.Chứng minh rằng: a/ A chia hết 13 b/ A chia hết cho 40
bài 3. Chứng tỏ rằng: a/ 109 + 2 chia hết cho 3 b/ 1010 _- 1 chia hết cho 9; c/6100 - 1 chia hết cho 5 ; d/ 2120 - 1110 chia hết cho 2 và 5.
bài 4. Tìm số tự nhiên n biết 288 chia n dư 38 và 414 chia n dư 14.
bài 5. Tìm số tự nhiên a lớn nhất thỏa mãn 543; 3567 đều chia cho a dư 3,
bài 6. Tìm số tự nhiên nhỏ nhất chia 3 dư 1, chia 5 dư 3, chia cho 7 dư 5.
4
Do 288 chia n dư 38=>250 chia hết cho n (1)
=> n > 38 (2)
Do 414 chia n dư 14=> 400 chia hết cho n (3)
Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)
=> n=50
1
x+15 chia hết cho x+2
x+2 chia hết cho x+2
=> x+15-(x+2) chia hết ch0 x+2
=>13 chia hết cho x+2
Do x thuộc N => x+2>= 0+2=2
Mà 13 chia hết cho 1 và 13
=> x+2 = 13
=> x=11
a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1
với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301
Tìm số tự nhiên nhỏ nhất biết rằng số đó chia cho 9 dư 5, chia cho 7 dư 4, và chia cho 5 dư 3.
1/ Tìm số tự nhiên nhỏ nhất có 3 chữ số sao cho chia cho 11 dư 5 ; chia cho 13 dư 7
2/ Chứng minh rằng : \(10^n+5^3⋮9\)
3/ Tìm x, y \(\in N\) biết : \(\left(x+1\right)\left(2y-5\right):143\)
Bài 2:
10^n có tổng các chữ số là 1
5^3 có tổng các chữ số là 8
=>10^n+5^3 có tổng các chữ số là 9
=>10^n+5^3 chia hết cho 9