Ta có x chia 9 dư 5,ta đặt x=9k+5
Khi đó,\(x^2=\left(9k+5\right)^2=81k^2+90k+25=9\left(9k^2+10k+2\right)+7\)
Vậy x2 chia 9 dư 7(đccm)
Ta có x chia 9 dư 5,ta đặt x=9k+5
Khi đó,\(x^2=\left(9k+5\right)^2=81k^2+90k+25=9\left(9k^2+10k+2\right)+7\)
Vậy x2 chia 9 dư 7(đccm)
Biết số tự nhiên x chia cho 7 dư 6.Chứng minh rằng x2 chia cho 7 dư 1
1.Chứng minh với mọi số nguyên n thì:
a) n(2n-3)-2n(n+1) luôn chia hết cho 5
b)(2n-3).(2n+3)-4n(n-9) luôn chia hết cho 9
2.Cho a và b là 2 số tự nhiên biết rằng a chia 5 dư 1, b chia 5 dư 4, cmr a.b chia 5 dư 4
Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng a 2 chia cho 5 dư 1.
Biết số tự nhiên n chia cho 9 dư 5 . Cmr n^2 chia cho 9 dư 7
Tìm số tự nhiên x biết x chia 2 dư 1 chia 3 dư 2 chia 4 dư 3 chia 5 dư 4 chia 6 dư 5 chia 7 dư 6 chia 8 dư 7 chia 9 dư 8 chia 10 dư 9.
Tìm số tự nhiên x biết x chia 2 dư 1 chia 3 dư 2 chia 4 dư 3 chia 5 dư 4 chia 6 dư 5 chia 7 dư 6 chia 8 dư 7 chia 9 dư 8 chia 10 dư 9.
Câu 1: Chứng minh rằng nếu số tự nhiên n chia hết cho 11 dư 4 thì n2 chia hết cho 11 dư 5.
Câu 2: Chứng minh rằng nếu số tự nhiên n chia cho 13 dư 7 thì n2-10 chia hết cho 13.
Tìm số tự nhiên x biết x chia 2 dư 1 chia 3 dư 2 chia 4 dư 3 chia 5 dư 4 chia 6 dư 5 chia 7 dư 6 chia 8 dư 7 chia 9 dư 8 chia 10 dư 9 chia 11 dư 10.
Biết số tự nhiên a chia cho 5 dư 1 số tự nhiên b chia cho 5 dư 2. Chứng minh rằng tổng các bình phương của hai số a và b chia hết cho 5