So sanh A voi 1
A= 1/4 + 1/9 + 1/16 +.........+1/2500
cho A=1/4+1/9+1/16+1/25+...+1/10000 so sanh A voi 3/4
A=(1/4-1).(1/9-1).(1/16-1)......(1/400-1) . so sanh A voi -1/2
So sanh 1/4+1/9+1/16+1/25+1/36+...+1/10000 voi 1 va neu cach giai(so sanh) nua nhe!
\(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+.....+\frac{1}{10000}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+.....+\frac{1}{100.100}\)
\(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}<\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)\(=1-\frac{1}{100}=\frac{99}{100}<1\)
Vậy \(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+.....+\frac{1}{10000}<1\)
Cho M=(1\4-1)×(1\9-1)×(1\16-1)×...×(1\81-1)×(1\100-1)
So sanh M voi -11\21
So sanh :
A = 1/2 + 1/4+ 1/8 + 1/16 + 1/32 voi 2005/2006
A = 31/32
Ta có 1 - 31/32 = 1/32
1 - 2005/2006 = 1/2006
so sanh a=(1/2-1)(1/3-1)(1/4-1)...(1/10-1)voi -1/9
ta có \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).......\left(\frac{1}{10}-1\right)\)
\(A=-\left(\frac{1}{2}.\frac{2}{3}.....\frac{9}{10}\right)\)
\(A=-\frac{1}{10}\)
vi\(-\frac{1}{10}>-\frac{1}{9}\)
do đó A>\(\frac{-1}{9}\)
cho B =(1/4-1)(1/9-1)................(1/100-1).So sanh A voi -11/21
so sanh:1/2+1/4+1/8+1/16+............+1/512 voi 1
1. So sanh voi1/2:
a) A= 1/9+ 1/16+ 1/25+......+ 1/3600.
b) So sanh voi 2/5:
S = 1/7 + 1/13 + 1/21 + 1/31 + 1/43 + 1/57 + 1/73+ 1/91