Cho tam giác ABC vuông tại A . kẻ AH vuông góc với BC tại H.
c, Qua H kẻ đường thẳng song song với AB cắt AC tại K. CM: K là trung điểm của AC
Cho tam giác ABC vuông tại A . kẻ AH vuông góc với BC tại H.
c, Qua H kẻ đường thẳng song song với AB cắt AC tại K. CM: K là trung điểm của AC
Cho tam giác ABC vuông tại A (AC > AB)đường cao AH ( H € BC ). Trên tia đối của tia bc lấy điểm K sao cho HK = HA qua K kẻ đường thẳng song song với AC cắt đường thẳng AC tại P a) Cm ∆ ABC ~ ∆ KPC b) Gọi Q là trung điểm của BP. Cm QA=QK và QH vuông góc AK c)Cm góc AKC = góc BPC d)Cm BP.HQ = BH.PC
cho tam giác ABC cân tại A (AB >AC) H là trung điểm của BC. a) Cm rằng :AH là phân giác của BAC b) Tính độ dài AH nếu BC = 4cm ,AB=cm c) Tia phân giác của góc B cắt AH tại M. CM :tam giác BMC cân d) Đường thẳng đi qua A và song song với BC cắt BM tại N. CM :AB=AN e) Kẻ MK vuông góc AC tại K. CM: MH=MK f) CM: MC vuông góc với NC
a: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là phân giác của góc BAC
c: ΔABC cân tại A
mà AH là trung tuyến
nên AH là trung trực của BC
=>I nằm trên trung trực của BC
=>IB=IC
d: Xet ΔABN có góc ABN=góc ANB=góc MBC
nên ΔABN can tại A
=>AB=AN
e: Xét ΔABC co
BM,AM là phân giác
nên M là tâm đừog tròn nội tiếp
=>CM là phân giác của góc ACB
Xét ΔHCM vuông tại H và ΔKCM vuông tại K có
CM chung
góc HCM=góc KCM
=>ΔHCM=ΔKCM
=>MH=MK
Cho tam giác ABC nhọn , M là trung điểm của BC, H là trực tâm . Qua H kẻ đường thẳng vuông góc với HM cắt AB và AC tại I và K . Từ C kẻ đường thẳng song song với IK cắt AH tại N , AB tại D. Chứng minh: ND=NC
Cho tam giác ABC nhọn , M là trung điểm của BC, H là trực tâm . Qua H kẻ đường thẳng vuông góc với HM cắt AB và AC tại I và K . Từ C kẻ đường thẳng song song với IK cắt AH tại N , AB tại D. Chứng minh: ND=NC
Cho tam giác ABC vuông tại A (AC>AB). Vẽ đường cao AH . Trên tia đối của tia BC lấy điểm K sao cho KH=HA. Qua K kẻ đường thẳng song song với AH cắt AC tại P
a) Chứng minh: Tam giác ABC đồng dạng với tam giác KPC
b) Gọi Q là trung điểm của BP. Chứng minh: QH là đường trung trực của đoạn thẳng AK
Cho tam giác ABC, phân giác AD, qua D kẻ đường thẳng song song với AB cắt AC tại E. Qua E kẻ đường thẳng song song với BC cắt AB tại F
a) Chứng minh AE=BF
b) Kẻ phân giác ngoài tại A của tam giác ABC cắt DE tại G. Chứng minh rằng E là trung điểm của DG
c) Đường thẳng vuông góc với AD tại D cắt AB, AC lần lượt tại H, K. Chứng minh AH=2FB
d) Từ E kẻ đường thẳng song song với DK cắt AD tại I.Chứng minh H, I, G thẳng hàng
Cho tam giác ABC có AB lớn hơn AC tia phân giác của góc A cắt BC tại D qua B kẻ đường thẳng vuông góc với AC cắt AC tại E a Chứng minh AB =AE b qua qua e kẻ đường thẳng song song với BC cắt AD tại F kẻ đường hai đường thẳng song song với BC tại K
Gọi Bx là tia đối của tia BA. Lấy E trên AC sao cho AB = AE
Xét tam giác BAD=EAD c-g-c => BD = DE và DEC = CBx
Trong tam giác ABC, BAC + ABC + ACB = 180 => ACB = 180 - BAC - ABC => ACB < 180 - ABC
Ta có DBx + ABC = 180 (hai góc kề bù) => DBx = 180 - ABC
=>ACB < DBx => ACB < DEC => Trong tam giác DEC, DC > DE (Quan hệ giữa góc và cạnh)
Vậy BD < DC