Tính giùm mk nka\(\left(\frac{3}{\sqrt{2}+1}+\frac{14}{2\sqrt{2}-1}-\frac{4}{2-\sqrt{2}}\right)\cdot\left(\sqrt{8}+2\right)\)
aj đúng, mk cko 5 like
\(\frac{\left(\frac{1}{14}-\frac{\sqrt{2}}{7}+\frac{3\sqrt{2}}{35}\right)\cdot\left(-\frac{4}{15}\right)}{\left(\frac{1}{10}+\frac{3\sqrt{2}}{25}-\frac{\sqrt{2}}{5}\right)\cdot\frac{5}{7}}\)
\(A=\frac{\left(\frac{1}{14}-\frac{\sqrt{2}}{7}+\frac{3\sqrt{2}}{35}\right)\cdot\left(-\frac{4}{15}\right)}{\left(\frac{1}{10}+\frac{3\sqrt{2}}{25}-\frac{\sqrt{2}}{2}\right)\cdot\frac{5}{7}}\)
giải hộ mk con này vs mk 2 like cho: rút gọn
:\(P1=\frac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}+\frac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}}\)
\(P2=\left(\frac{1-A\sqrt{A}}{1-\sqrt{A}}+\sqrt{A}\right)\cdot\left(\frac{1-\sqrt{A}}{1-A}\right)^2\)
P2\(=\left(\frac{1-A\sqrt{A}}{1-\sqrt{A}}+\sqrt{A}\right).\left(\frac{1-\sqrt{A}}{1-A}\right)^2\)\(=\left(\frac{1-A\sqrt{A}+\sqrt{A}-A}{1-\sqrt{A}}\right).\frac{\left(1-\sqrt{A}\right)^2}{\left(1-A\right)^2}\)\(=\frac{\left(\sqrt{A}+1\right)\left(1-A\right)}{1-\sqrt{A}}.\frac{\left(1-\sqrt{A}\right)^2}{\left(1-\sqrt{A}\right)^2\left(1+\sqrt{A}\right)^2}\)
\(=\left(\sqrt{A}+1\right)^2.\frac{1}{\left(1+\sqrt{A}\right)^2}=1\)
Tính
A=\(\left(\frac{15}{\sqrt{7}+2}+\frac{12}{\sqrt{7}-1}-\frac{8}{3-\sqrt{7}}\right)\cdot\left(3\sqrt{7}+20\right)\)
B=\(\left(9+4\sqrt{5}\right):\left(\frac{\sqrt{5}+2}{\sqrt{5}-2}\right)\)
1.Chứng minh: \(\frac{1}{2\cdot\sqrt{1}}+\frac{1}{3\cdot\sqrt{2}}+\frac{1}{4\cdot\sqrt{3}}+...+\frac{1}{2012\cdot\sqrt{2011}}+\frac{1}{2013\cdot\sqrt{2012}}\)\(< 2\)
2.Chứng minh: A= \(\frac{1}{3\cdot\left(\sqrt{1}+\sqrt{2}\right)}+\frac{1}{5\cdot\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{97\cdot\left(\sqrt{48}+\sqrt{49}\right)}\)\(< \frac{1}{2}\)
2.+ \(\left(2n+1\right)^2=4n^2+4n+1>4n^2+4n\)
\(\Rightarrow2n+1>\sqrt{4n\left(n+1\right)}=2\sqrt{n\left(n+1\right)}\)
+ \(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{2n+1}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Do đó : \(A< \frac{1}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{48}}-\frac{1}{\sqrt{49}}\right)\)
\(\Rightarrow A< \frac{1}{2}\)
1. + \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\left(n+1\right)-n}{\left(n+1\right)\sqrt{n}}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}\)
\(< \frac{\left(\sqrt{n+1}-\sqrt{n}\right)\cdot2\sqrt{n+1}}{\sqrt{n}\left(n+1\right)}=2\cdot\frac{n+1-\sqrt{n\left(n+1\right)}}{\left(n+1\right)\sqrt{n}}=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Do đó : \(A< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)
\(\Rightarrow A< 2\)
Bài 2 tạm thời chưa nghĩ ra :))
\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
\(0.1\cdot\sqrt{\left(-3\right)^2}\cdot\left[6\sqrt{\left(\frac{1}{3}\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\right]^2\)
\(\left(\frac{3\sqrt{2}+\sqrt{6}}{\sqrt{12}+2}-\frac{\sqrt{54}}{3}\right)\cdot\frac{2}{\sqrt{6}}\)
\(\left(\frac{3+2\sqrt{3}}{\sqrt{3}+2}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\right)\div\left(1\div\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)
\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
1) \(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
2) \(0.1\sqrt{\left(-3\right)^2}\cdot\left[6\sqrt{\left(-\frac{1}{3}\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\right]^2\)
3) \(\left(\frac{3+2\sqrt{3}}{\sqrt{3}+2}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\right)\div\left(1\div\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)
4) \(\left(\frac{3\sqrt{2}+\sqrt{6}}{\sqrt{12}+2}-\frac{\sqrt{54}}{3}\right)\cdot\frac{2}{\sqrt{6}}\)
5) \(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
\(=\sqrt{\frac{3+2\sqrt{3}\sqrt{2}+2}{3-2\sqrt{3}\sqrt{2}+2}}+\sqrt{\frac{3-2\sqrt{3}\sqrt{2}+2}{3+2\sqrt{3}\sqrt{2}+2}}\)
\(=\sqrt{\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{\left(\sqrt{2}-\sqrt{3}\right)^2}}+\sqrt{\frac{\left(\sqrt{2}-\sqrt{3}\right)^2}{\left(\sqrt{2}+\sqrt{3}\right)^2}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)}+\frac{\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)}\)\
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)^2+\left(\sqrt{2}-\sqrt{3}\right)^2}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\frac{5+2\sqrt{6}+5-2\sqrt{6}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=10\)
\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
\(=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
\(=\sqrt{3}+2+\sqrt{2}-\sqrt{2}-3\)
\(=\sqrt{3}-1\)
Bài 1: Thực hiện phép tính:
a,\(\left(\frac{-3}{4}+\frac{2}{7}\right):\frac{2}{7}+\left(\frac{-1}{4}+\frac{5}{7}\right):\frac{2}{3}\)
b,\(\left(-\frac{1}{3}\right)^2\cdot\frac{4}{11}+\frac{7}{11}\cdot\left(-\frac{1}{3}\right)^2\)
c, \(\left(-\frac{1}{7}\right)^0-2\frac{4}{9}\cdot\left(\frac{2}{3}\right)^2\)
d,\(\frac{2^7\cdot9^2}{3^3\cdot2^5}\)
e,\(\left(\frac{1}{3}-\frac{5}{6}\right)^2+\frac{5}{6}:2\)
f,\(\left(9\frac{2}{4}:5,2+3.4\cdot2\frac{7}{34}\right):\left(-1\frac{9}{16}\right)\)
g,\(\sqrt{25}-3\sqrt{\frac{4}{9}}\)
h,\(\left(-2\right)^2+\sqrt{36}-\sqrt{9}+\sqrt{25}\)
i,\(\left(-\frac{1}{2}\right)^4+\left|-\frac{2}{3}\right|-2007^0\)
k,\(\left(-2\right)^3+\frac{1}{2}:\frac{1}{8}-\sqrt{25}+\left|-64\right|\)
m,\(\left(-3\right)^2\cdot\frac{1}{3}-\sqrt{49}+\left(-5\right)^3:\sqrt{25}\)
n,\(\frac{\sqrt{3^2+\sqrt{39^2}}}{\sqrt{91^2}-\sqrt{\left(-7\right)^2}}\)
Chứng minh: \(\frac{1}{2\cdot\sqrt{1}}+\frac{1}{3\cdot\sqrt{2}}+\frac{1}{4\cdot\sqrt{3}}+...+\frac{1}{2012\cdot\sqrt{2011}}+\frac{1}{2013\cdot\sqrt{2012}}\)\(< 2\)
Chứng minh: A=\(\frac{1}{3\cdot\left(\sqrt{1}+\sqrt{2}\right)}+\frac{1}{5\cdot\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{97\cdot\left(\sqrt{48}+\sqrt{49}\right)}\)\(< \frac{1}{2}\)
Đặt B là tên biểu thức
Với mọi n thuộc N*, ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\) (*)
Áp dụng (*), ta được:
\(B< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)
\(=2\left(1-\frac{1}{\sqrt{2013}}\right)=2-\frac{1}{\sqrt{2013}}< 2\)