Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Thành Đạt
Xem chi tiết
Hoàng Phúc
7 tháng 6 2016 lúc 15:00

bài này thuộc dạng phân thức đồng nhất nhé bn:

Ta có: \(\frac{1}{\left(x+1\right)\left(1-x\right)}=\frac{a}{x+1}+\frac{b}{x-1}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(1-x\right)}=\frac{a\left(x-1\right)+b\left(x+1\right)}{\left(x+1\right)\left(1-x\right)}=\frac{ax-a+bx+b}{\left(x+1\right)\left(1-x\right)}\)\(=\frac{ax+bx+\left(-a+b\right)}{\left(x+1\right)\left(1-x\right)}=\frac{\left(a+b\right)x+\left(-a+b\right)}{\left(x+1\right)\left(1-x\right)}\)

Theo định nghĩa về 2 phân thức bằng nhau,ta có:

      a+b=0        (chỗ này bn phải ghi dấu "{" nhé,tại mk ko viết đc)

{

   -a+b=1

<=>       -a=b 

     {

      và   -a+b=1

<=> b=1/2;a=-1/2

Vậy.................

tống thị quỳnh
Xem chi tiết
Thắng Nguyễn
10 tháng 8 2017 lúc 22:47

post từng câu một thôi bn nhìn mệt quá

Hợp Tổng
Xem chi tiết
Ngô Thị Hà
17 tháng 12 2015 lúc 4:49

Câu Hỏi Tương Tự nha bạn !

Tri Khánh
Xem chi tiết
Thiều Thị Hương Trà
Xem chi tiết
Phù thủy lạnh lùng
Xem chi tiết
Nguyệt
24 tháng 12 2018 lúc 16:40

\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

\(TH1:x+y+z=0\)

\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)

\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)

\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)

\(TH2:x+y+z\ne0\)

\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)

sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N 

mà đề là x+y+z khác 0 -.-

Phù thủy lạnh lùng
24 tháng 12 2018 lúc 16:46

cảm ơn nhiều

aaaaaaaa
Xem chi tiết
aaaaaaaa
27 tháng 8 2018 lúc 22:11

ai làm cái đang cần gấp huhu

Đinh quang hiệp
28 tháng 8 2018 lúc 15:53

\(A=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=1+\frac{1}{x^2y^2}-\left(\frac{1}{x^2}+\frac{1}{y^2}\right)=1+\frac{\left(x+y\right)^2}{x^2y^2}-\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)

\(=1+\frac{x^2+2xy+y^2}{x^2y^2}-\left(\frac{1}{x^2}+\frac{1}{y^2}\right)=1+\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}-\left(\frac{1}{x^2}+\frac{1}{y^2}\right)=1+\frac{2}{xy}\)

\(=1+\frac{2\left(x+y\right)}{xy}=1+\frac{2x+2y}{xy}=1+\frac{2}{x}+\frac{2}{y}=1+\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{2}\right)^2}{y}\)

\(>=1+\frac{\left(\sqrt{2}+\sqrt{2}\right)^2}{x+y}=1+\frac{\left(2\sqrt{2}\right)^2}{1}=1+8=9\)(bđt cauchy schawarz dạng engel)

dấu = xảy ra khi \(\frac{2}{x}=\frac{2}{y}\Rightarrow x=y=\frac{1}{2}\)

vậy min A là 9 khi x=y=\(\frac{1}{2}\)

Nguyễn Thiên Nhi
Xem chi tiết
Nguyen Ngoc Minh Ha
Xem chi tiết