1/3x1 + 1/3x5 + ......+ 1/95x97 + 1/97x99
1/3x1 + 1/5x3 +.........+1/95x97+1/97x99
Đặt A=1/3x1 + 1/3x5 + ......+ 1/95x97 + 1/97x99
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
\(2A=1-\frac{1}{99}\)
\(A=\frac{98}{99}:2\)
\(A=\frac{49}{99}\)
Tính tổng:
A=1/1+1/2+1/3+1/4+1/5+1/6
B=1x3+3x5+5x7+7x9+...+95x97+97x99
Tính tổng:(giúp em nhá) B=1x3+3x5+5x7+7x9+...+95x97+97x99
B=1x3+3x5+5x7+7x9+...+95x97+97x99
= 1.(1+2)+3.(3+2)+5.(5+2)+....+95.(95+2)+97.(97+2)
= 12+1.2+32+3.2 +52+5.2+...+952+95.2+ 972+97.2
= (12+32 +52+...+952+ 972)+(1.2+3.2 +5.2+...+95.2+97.2)
= (12+32 +52+...+952+ 972)+ 2.(1+3 +5+...+95+97)
Đặt : A = 12+32 +52+...+952+ 972
C =1+3 +5+...+95+97
tính A và C (tìm câu hỏi tương tự hình như anh thấy họ làm rồi đấy) sau đó thay vào tính B
Tính tổng:(giúp em nhá)
B=1x3+3x5+5x7+7x9+...+95x97+97x99
Ta có \(6B=1\times3\times6+3\times5\times6+...+97\times99\times6\)
\(=1\times3\times\left(5+1\right)+3\times5\times\left(7-1\right)+5\times7\times\left(9-3\right)+...+97\times99\times\left(101-95\right)\)
\(=1\times3\times5+1.3+3\times5\times7-3\times5\times1+...-97\times99\times95\)
\(=97\times99\times101+3\)
\(\Rightarrow B=\frac{97\times99\times101+3}{6}=161651\)
6B=1x3x6+3x5x6+5x7x6+.....+97x99x6
6B=1x3x(5+1)+3x5x(7-1)+....+97x99x(102-95)
6B=1x3x5+1x3+3x5x7-3x5+....+97x99x101-95x97x99
6B=1x3x97x99x101
6B=969906
=>B=161651
6B = 1x3x6 + 3x5x6 + 5x7x6 +...+ 99x101x6
= 1x3(5+1)+3x5(7-1)+...+97x99(101-95)
= 1x3x5+1x3+3x5x(7-1)+...-97x99x95
=97x99x101+3 rồi tự làm..................... >.<
tinh
S = 2/1x3-4/3x5+6/5x7-8x7x9+...-96/95x97+98/97x99
tinh gia tri bieu thuc
S = 2/1x3-4/3x5+6/5x7-8/7x9+.....-96/95x97+98/97x99
Tính nhanh giá trị biểu thức sau:
\(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+.....+\frac{2}{95x97}+\frac{2}{97x99}\)
= 1-1/3 + 1/3-1/5+.......+1/97-1/99
= 1 - 1/99
= 98/99
sao lại là 1- 1/3 + 1/3 -1/5 + ...... 1/97 - 1/99 hả bạn :|
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{95.97}\)\(+\frac{2}{97.99}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-....-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\)
\(=1-\frac{1}{99}\)
\(=\frac{98}{99}\)
1/1x3+1/3x5+......+1/97x99 = ?
\(\frac{1}{1x3}+\frac{1}{3x5}+....+\frac{1}{97x99}\)=S
\(2S=\frac{3-1}{1x3}+\frac{5-3}{3x5}+...+\frac{99-97}{97x99}\)
\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}=1-\frac{1}{99}=\frac{98}{99}\)
\(S=\frac{2S}{2}=\frac{49}{99}\)
1/1x3+1/2x4+1/3x5+...+1/97x99+1/98x100-49/99
\(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+..+\dfrac{1}{97.99}+\dfrac{1}{98.100}-\dfrac{49}{99}\)
\(=\dfrac{1}{2}\left[\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{1}{97.99}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{99.100}\right)\right]-\dfrac{49}{99}\)
\(=\dfrac{1}{2}\left[1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+..+\dfrac{1}{98}-\dfrac{1}{100}\right]-\dfrac{49}{99}\)
\(=\dfrac{1}{2}\left[1-\dfrac{1}{99}+\dfrac{1}{2}-\dfrac{1}{100}\right]-\dfrac{49}{99}\)
\(=\dfrac{1}{2}\left[\dfrac{98}{99}+\dfrac{49}{100}\right]-\dfrac{49}{99}=\dfrac{14651}{19800}-\dfrac{49}{99}=\dfrac{49}{200}\)
\(\dfrac{1}{1x3}+\dfrac{1}{2x4}+...+\dfrac{1}{98x100}+\dfrac{1}{97x99}-\dfrac{49}{99}=1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{100}-\dfrac{49}{99}=1-\dfrac{1}{100}-\dfrac{49}{99}\)
=\(\dfrac{4901}{9900}\)