Cho tam giác ABC, M nằm trong tam giác, G là trọng tâm của tam giác. Đường thẳng đi qua M và G cắt BC, CA, AB theo thứ tự ở A1, B1, C1. CM:MA1/GA1+MB1/GB1+MC1/GC1
cho tam giác ABC,M là điểm tùy ý nằm trong tam giác.Đường thẳng qua M và trọng tâm G của tam giác cắt BC,CA,AB lần lượt tại A1,B1,C1.Chứng minh rằng \(\frac{MA1}{GA1}+\frac{MB1}{GB1}+\frac{MC1}{GC1}=3\)
cho tam giác ABC,M là điểm tùy ý nằm trong tam giác.Đường thẳng qua M và trọng tâm G của tam giác cắt BC,CA,AB lần lượt tại A1,B1,C,.Chứng minh rằng \(\frac{MA1}{GA1}+\frac{MB1}{GB1}+\frac{MC1}{GC1}=3\)
Cho tam giác ABC có O là trọng tâm tam giác ABC. M nằm trong tam giác. Đường thẳng MO cắt BC, CA, AB lần lượt tại A1, B1, C1. CM MA1/OA1 + MB1/OB1 + MC1/OC1 không đổi
Trên các cạnh BC, CA, AB của tam giác ABC tương ứng lấy các điểm A1, B1, C1. Gọi Ga, Gb, Gc theo thứ tự là trọng tâm các tam giác AB1C1, C1A1B, A1B1C và G, G1, G2 là trọng tâm của các tam giác ABC, A1B1C1, GaGbGc theo thứ tự đó. Chứng minh rằng G, G1, G2 thẳng hàng.
Từ giả thiết suy ra với mọi O đều có ?
\(\overrightarrow{OG}=\frac{1}{3}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right)\) và \(\overrightarrow{OG_1}=\frac{1}{3}\left(\overrightarrow{OA}_1+\overrightarrow{OB_1}+\overrightarrow{OC}_1\right)\)
Mà :
\(\overrightarrow{OG_2=}\frac{1}{3}.\left(\overrightarrow{OGa}+\overrightarrow{OG_b}+\overrightarrow{OG_c}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}\left(\overrightarrow{OA}+\overrightarrow{OB_1}+\overrightarrow{OC_1}\right)+\frac{1}{3}\left(\overrightarrow{OB}+\overrightarrow{OC_1}+\overrightarrow{OA_1}\right)+\frac{1}{3}\left(\overrightarrow{OC}+\overrightarrow{OA_1}+\overrightarrow{OB_1}\right)\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right)+\frac{2}{3}\left(\overrightarrow{OA_1}+\overrightarrow{OB_1}+\overrightarrow{OC}_1\right)\right)\)
\(=\frac{1}{3}\overrightarrow{OG}+\frac{2}{3}\overrightarrow{OG_1}\)
Suy ra :
\(3\overrightarrow{OG_2}=\overrightarrow{OG}+2\overrightarrow{OG_1}\) với mọi O. Điều này có nghĩa là \(G,G_1,G_2\) thẳng hàng => Điều phải chứng minh
Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.
a) Vì sao AD là đường kính của đường tròn(O)
b) Tính góc ∠ACD
c) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)
Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:
a) Chu vi tam giác IMC lớn hơn 2R
b) Chu vi tam giác ABC lớn hơn 4R
Bài 3: Cho tam giác ABC có D, E, F theo thứ tự là trung điểm BC, CA, AB. G, H, I theo thứ tự là chân đường cao từ đỉnh A, B, C. Trực tâm tam giác ABC là S. J, K, L theo thứ tự là trung điểm của SA, SB, SC. Chứng minh rằng: 9 điểm D, E, F, G, H, I, J, K, L cùng thuộc đường tròn. ( Gợi ý: đường tròn đường kính JD)
Bài 4: Cho tam giác ABC nội tiếp(O), H là trực tâm tam giác ABC. Gọi D, E, F thứ tự là trung điểm của BC, CA, AB. Đường tròn tâm D bán kính DH cắt BC tại A1, A2, đường tròn tâm E bán kính EH cắt CA tại B1, B2, đường tròn tâm F bán kính FH cắt AB tại C1, C2.
a) : Chứng minh 3 đường thẳng DD' , EE' , FF' đồng quy ( DD' song song với OA, EE' song songvới OB, FF' song song với OC ).
b) Chứng minh 6 điểm A1, A2, B1, B2, C1, C2 nằm trên một đường tròn.
Bài 1 : Bài giải
Hình tự vẽ //
a) Ta có DOC = cung DC
Vì DOC là góc ở tâm và DAC là góc chắn cung DC
=>DOC = 2 . AOC (1)
mà tam giác AOC cân =>AOC=180-2/AOC (2)
Từ (1) ; (2) ta được DOC + AOC = 180
b) Góc ACD là góc nội tiếp chắn nữa đường tròn
=>ACD=90 độ
c) c) HC=1/2*BC=12
=>AH=căn(20^2-12^2)=16
Ta có Sin(BAO)=12/20=>BAO=36.86989765
=>AOB=180-36.86989765*2=106.2602047
Ta có AB^2=AO^2+OB^2-2*OB*OA*cos(106.2602047)
<=>AO^2+OA^2-2OA^2*cos(106.2602047)=20^2
=>OA=12.5
Cho tam giác đều ABC, M là 1 đm nằm trong tam giác. Gọi A', B', C' là chân đường vuông góc hạ từ M tới BC, CA và AB. A1, B1, C1 lần lượt là đm đối xứng của M qua BC, CA và AB
Chứng minh: tam giác A'B'C' và tam giác A1B1C1 có cùng trọng tâm
tu lam di ban oi
bạn chịu khó gõ link này lên google
https://olm.vn/hoi-dap/detail/251347049833.html
Cho tam giác đều ABC, M là 1 đm nằm trong tam giác. Gọi A', B', C' là chân đường vuông góc hạ từ M tới BC, CA và AB. A1, B1, C1 lần lượt là đm đối xứng của M qua BC, CA và AB
Chứng minh: tam giác A'B'C' và tam giác A1B1C1 có cùng trọng tâm
Cho tam giác ABC.Trên BC lấy A1,A2 đối xứng qua trung điểm của BC.Rồi lấy B1,B2,C1,C2 tương tự.Chứng minh G1,G2,G thẳng hàng(G là trọng tâm tam giác ABC,G2 là trọng tâm tam giác A1B1C1,G2 là trọng tâm tam giác A2B2C2)
Cho tam giác ABC và điểm M tùy ý nằm trong tam giác. GỌi I,J,K theo thứ tự là trung điểm của các cạnh BC,CA,AB. Trên các tia đối của tia IM,JM,LM theo thứ tự lấy các điểm A',B',C' sao cho IA'=IM;JB'=JM;LC'=LM, CMR:
a) Ba đường thẳng AA',BB',CC' đồng quy tại M1.
b) Khi M di động, MM1 luôn đi qua G là trọng tâm tam giác ABC