Chương 3: VECTƠ TRONG KHÔNG GIAN. QUAN HỆ VUÔNG GÓC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Trọng Nghĩa

Trên các cạnh BC, CA, AB của tam giác ABC tương ứng lấy các điểm A1, B1, C1. Gọi Ga, Gb, Gc theo thứ tự là trọng tâm các tam giác AB1C1, C1A1B, A1B1C và G, G1, G2 là trọng tâm của các tam giác ABC, A1B1C1, GaGbGc theo thứ tự đó. Chứng minh rằng G, G1, G2 thẳng hàng.

Bắc Băng Dương
19 tháng 3 2016 lúc 11:05

Từ giả thiết suy ra với mọi O đều có ?

\(\overrightarrow{OG}=\frac{1}{3}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right)\)  và  \(\overrightarrow{OG_1}=\frac{1}{3}\left(\overrightarrow{OA}_1+\overrightarrow{OB_1}+\overrightarrow{OC}_1\right)\)

Mà :

\(\overrightarrow{OG_2=}\frac{1}{3}.\left(\overrightarrow{OGa}+\overrightarrow{OG_b}+\overrightarrow{OG_c}\right)\)

        \(=\frac{1}{3}\left(\frac{1}{3}\left(\overrightarrow{OA}+\overrightarrow{OB_1}+\overrightarrow{OC_1}\right)+\frac{1}{3}\left(\overrightarrow{OB}+\overrightarrow{OC_1}+\overrightarrow{OA_1}\right)+\frac{1}{3}\left(\overrightarrow{OC}+\overrightarrow{OA_1}+\overrightarrow{OB_1}\right)\right)\)

        \(=\frac{1}{3}\left(\frac{1}{3}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right)+\frac{2}{3}\left(\overrightarrow{OA_1}+\overrightarrow{OB_1}+\overrightarrow{OC}_1\right)\right)\)

        \(=\frac{1}{3}\overrightarrow{OG}+\frac{2}{3}\overrightarrow{OG_1}\)

Suy ra :

\(3\overrightarrow{OG_2}=\overrightarrow{OG}+2\overrightarrow{OG_1}\)  với mọi O. Điều này có nghĩa là \(G,G_1,G_2\) thẳng hàng => Điều phải chứng minh


Các câu hỏi tương tự
Trần Thảo Nguyên
Xem chi tiết
Nguyễn Minh Nguyệt
Xem chi tiết
Nguyễn Tuấn
Xem chi tiết
Nguyễn Hà Minh Thanh
Xem chi tiết
Nguyễn Hà Minh Thanh
Xem chi tiết
Phạm Thái Dương
Xem chi tiết
Nhật Ánh Nguyễn
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Đặng Minh Quân
Xem chi tiết