Tìm tất cả các cặp số tự nhiên x sao cho ( 2x + 3 ) và ( x + 2 ) đều là lũy thừa cơ số 3
1. hãy tìm tất cả các mũ của 56
2. giải thích tại sao không tính lũy thừa
22+ 23+24+25 chia hết cho 3?
3. tìm các số tự nhiên x,y biết :
(2x + 1) . (y - 3) = 10
4. tìm số chia của 1 phép chia biết số bị chia bằng 236, số dư bằng 15 và số chia là số có 2 chữ số
mong mn giúp mình ^^
Tìm các số tự nhiên x biết: x+3 và 3x+1 đều là lũy thừa của 2.
Tham khảo
Ta có : 3x+1/x+3=2
⇔3x+1=(x+3).2
⇔3x+1=2x+6
⇔3x−2x=−1+6
⇔x=5
Thay x=5 vào 3x+1/x+3 ta có:
3.5+1/5+3
=15+1/8
=16/8
=2
Lại thấy : 2 là lũy thừa của 2
Vậy x=5 thì 3x+1/x+3 đều là lũy thừa của 2
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
Tìm tất cả các số tự nhiên n sao cho \(n^3+3n^2+n+3\) là lũy thừa của một số nguyên tố
Tìm số tự nhiên x biết : x+3 và 3x+1 đều là lũy thừa của 2
tìm các số tự nhiên x,y sao cho(2x+1)x(x-5)=12
tìm tất cả các số tự nhiên n sao cho 4n-5 chia hết cho 2n-1
tìm tất cả các số B sao cho:b=62xy427 biết B chia hết cho 99
3 câu 3 like
(2x+1)(x-5)=12
2x2-9x-17=0
delta=217
x1= \(\frac{-\left(-9\right)-\sqrt{217}}{2\cdot2}=\frac{9-\sqrt{217}}{4}\) x2=\(\frac{-\left(-9\right)+\sqrt{217}}{2\cdot2}=\frac{9+\sqrt{217}}{4}\)
P/s: ko có y hả b?
tìm các số tự nhiên x,y sao cho(2x+1)x(x-5)=12
tìm tất cả các số tự nhiên n sao cho 4n-5 chia hết cho 2n-1
tìm tất cả các số B sao cho:b=62xy427 biết B chia hết cho 99
3 câu 3 like
1) 3n ⋮ 2n - 5
=> 2(3n) - 3(2n - 5) ⋮ 2n - 5
=> 6n - 6n + 15 ⋮ 2n - 5
=> 15 ⋮ 2n - 5
=> 2n-5 ϵ Ư(15)
Ư(15) = {1;-1;3;-3;5;-5;15;-15}
=> n={3;2;4 ;1;5;0;10;-5