tìm một số biết khi chia số đó cho 29 thì dư 5 còn chia cho 31 dư 29
Tìm một số tự nhiên nhỏ nhất biết nếu số đó chia cho 29 thì dư 5 , còn chia cho 31 thì dư 29.
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A=29p+5(p thuộc N)
Tương tự: A=31q+28(q thuộc N)
Nên: 29p+5=31q+28=>29(p-q)=2q+23
Ta thấy: 2q+23 là số lẻ=>29(p-q) cũng là số lẻ=>p-q=1
Theo giả thiết A nhỏ nhất=>q nhỏ nhất(A=31q+28)
=>2q=29(p-q)-23 nhỏ nhất
=>p-q nhỏ nhất
Do đó p-q=1=>2q=29-23=6
=>q=3
Vậy số cần tìm là A=31q+28=31.3+28=121
Tìm một số tự nhiên nhỏ nhất, biết khi chia số đó cho 29 thì dư 5 và khi chia cho 31 thì dư 29
Tìm một số tự nhiên nhỏ nhất, biết khi chia số đó cho 29 thì dư 5, chia cho 31 thì dư 29.
Giả sử số cần tìm là A đã bớt đi 5.
Khi đó A chia hết cho 29, còn A chia cho 31 dư: 29 - 5 = 24
=> A=31x k+24 (k là số tự nhiên)
Thử chọn: k=0,1,2,3,...ta thấy: khi k=17 thì A=551 chia hết cho 29
Vậy số cần tìm là: A = 551 + 5 = 556
ĐS: 556
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A=29p+5(p thuộc N)
Tương tự: A=31q+28(q thuộc N)
Nên: 29p+5=31q+28=>29(p-q)=2q+23
Ta thấy: 2q+23 là số lẻ=>29(p-q) cũng là số lẻ=>p-q=1
Theo giả thiết A nhỏ nhất=>q nhỏ nhất(A=31q+28)
=>2q=29(p-q)-23 nhỏ nhất
=>p-q nhỏ nhất
Do đó p-q=1=>2q=29-23=6
=>q=3
Vậy số cần tìm là A=31q+28=31.3+28=121
tìm một số tự nhiên nhỏ nhất ,biết rằng khi chia số đó cho 29 thì dư 5 và khi chia cho 31 thì dư 29.số đó là......?
Nếu chia hết cho 29 thì chia cho 31 dư 28-5=23.
Hiệu của 31 và 29: 31 - 29 = 2
Thương của phép chia cho 31 là:
(29-23) : 2 = 3
(Hoặc. Gọi a là thương lúc này của phép chia cho 31.
2 x a + 23 = 29 => a = 3)
Số cần tìm là:
31 x 3 + 28 = 121
Đáp số: 121
mình giải chi tiết ròi đó , tick mình nha
Tìm số tự nhiên nhỏ nhất,biết rằng khi chia số đó cho 29 dư 5,còn khi chia cho 31 thì dư 28.Tìm số đó
c1
Nếu chia hết cho 29 thì chia cho 31 dư 28-5=23.
Hiệu của 31 và 29: 31 - 29 = 2
Thương của phép chia cho 31 là:
(29-23) : 2 = 3
(Hoặc. Gọi a là thương lúc này của phép chia cho 31.
2 x a + 23 = 29 => a = 3)
Số cần tìm là:
31 x 3 + 28 = 121
Đáp số: 121
c2
Bài giải:
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
tk nha mk trả lời đầu tiên đó!!!
Gọi số tự nhiên cần tìm là A Chia cho 29 dư 5 nghĩa là:
A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất Do đó p – q = 1
=> 2q = 29 – 23 = 6 => q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 có nghĩa là:A= 29p + 5 (p \(\varepsilon\)N)
Tương tự : A = 31p +28 (p \(\varepsilon\)N)
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là:A = 31q + 28 = 31. 3 + 28 = 121
Tìm một số tự nhiên nhỏ nhất, biết rằng khi chia số đó cho 29 thì dư 5 và khi chia cho 31 thì dư 29
AI **** cho minh tron -60 **** di
Tìm một số tự nhiên nhỏ nhất, biết rằng khi chia số đó cho 29 thì dư 5 và khi chia cho 31 thì dư 29
Tìm một số tự nhiên nhỏ nhất, biết rằng khi chia số đó cho 29 thì dư 5 và khi chia cho 31 thì dư 29.
Tìm một số tự nhiên nhỏ nhất, biết rằng khi chia số đó cho 29 thì dư 5 và khi chia cho 31 thì dư 29