Tìm hai số x và y thỏa mãn các điều kiện \(\hept{\begin{cases}x^2+y^2=25\\xy=12\end{cases}}\)
Tìm các cặp số thực ( x;y ) thỏa mãn các điều kiện : \(\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{1}{2}\\3xy=x+y+1\end{cases}}\)
M giải luôn nha
\(\frac{1}{2}=\frac{x^2}{\left(y+1^2\right)}+\)\(\frac{y^2}{\left(x+1\right)^2}\) \(\ge\frac{2xy}{\left(x+1\right)\left(y+1\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\ge4xy\)
\(\Leftrightarrow3xy\le x+y+1\)
Dấu " = " xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}=\frac{y^2}{\left(x+1\right)^2}\\3xy=x+y+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y\\3x^2-2x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=1\left(tm\right)\\x=y=-\frac{1}{3}\left(tm\right)\end{cases}}\)
Vậy ( x ; y ) ......
Tìm các cặp số thực (x;y) thỏa mãn cái điều kiện:
\(\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{1}{2}\\3xy=x+y+1\end{cases}}\)
Ta có: 3xy=x+y+1
\(\Leftrightarrow4xy=xy+x+y+1\)
\(\Leftrightarrow4xy=\left(x+1\right)\left(y+1\right)\)
Lai có:\(\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}-\frac{2xy}{\left(x+1\right)\left(y+1\right)}=0\)
\(\Leftrightarrow\left(\frac{x}{y+1}-\frac{y}{x+1}\right)^2=0\)
giải tiếp hộ t với. sao t tìm ra 4 nghiệm nhưng thử lại chỉ 2 cái đc
Tìm x,y,z thỏa mãn các điều kiện sau
\(\hept{\begin{cases}\frac{2x^2}{x^2+1}=y\\\frac{2y^2}{y^2+1}=z\\\frac{2z^2}{z^2+1}=x\end{cases}}\)
Tìm x,y,z thỏa mãn:\(\hept{\begin{cases}x+y=2\\xy-z^2=1\end{cases}}\)
Tìm các số nguyên x,y,z thỏa mãn hệ phương trình
\(\hept{\begin{cases}xy+yz+zx=12\\x^4+y^4+z^4=48\end{cases}}\)
Trả lời nhanh câu hỏi này giùm tớ nào ?
Cho x,y thỏa mãn:\(\hept{\begin{cases}xy+x+y=-1\\x^2y+xy^2=-12\end{cases}}\)tính \(x^3+y^3\)
Đặt \(a=x+y,b=xy\), hệ trở thành \(\hept{\begin{cases}a+b=-1\\ab=-12\end{cases}}\)
Từ pt đầu ta có \(b=-1-a\)thay vào pt sau : \(a\left(-1-a\right)=-12\Leftrightarrow a^2+a-12=0\Leftrightarrow\left(a+4\right)\left(a-3\right)=0\Leftrightarrow\orbr{\begin{cases}a=3\\a=-4\end{cases}}\)
Từ đó suy ra các giá trị của b
Từ a,b tương ứng ta quy về hệ đối xứng loại một và giải.
cho hpt \(\hept{\begin{cases}\left(m+1\right)x+y=4\\mx+y=2m\end{cases}}\)
tìm m để hpt có nghiệm (x,y) thỏa mãn điều kiện x+y=2
Cho hai số x, y thỏa mãn: \(\hept{\begin{cases}x+y\le2\\x^2+y^2+xy=3\end{cases}}\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: \(T=x^2+y^2-xy\)
bạn sửa lại là 9-2t^2 nhé , mình đánh nhầm ^^
Hệ \(\hept{\begin{cases}x+y\le2\\x^2+y^2+xy=3\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=2-a\left(a\ge0\right)\\x^2+y^2+xy=3\end{cases}}}\)
Do đó \(\hept{\begin{cases}x+y=2-a\\xy=\left(2-a\right)^2-3\end{cases},\Delta=S^2-4P\ge0\Rightarrow0\le a\le4}\)
\(T=x^2+y^2+xy-2xy=9-2\left(2-a\right)^2\)
minT=1 khi x=1; y=1 hoặc x=-1; y=-1
maxT=9 khi \(\orbr{\begin{cases}x=\sqrt{3};y=-\sqrt{3}\\x=-\sqrt{3};y=\sqrt{3}\end{cases}}\)
Tìm các số thực x,y,z thỏa các điều kiện sau:
\(\hept{\begin{cases}0< x,y,z< 1\\\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+z+yz}\end{cases}}=\frac{3}{x+y+z}\)
Sai đề nhá, đáng lẽ \(0\le x,y,z\le1\)
Ta dễ có:
\(1+y+zx\le x^2+xy+xz\Rightarrow\frac{x}{1+y+zx}\ge\frac{x}{x^2+xy+xz}=\frac{1}{x+y+z}\)
Tương tự:
\(\frac{y}{1+z+xy}\ge\frac{1}{x+y+z};\frac{z}{1+z+yz}\ge\frac{1}{x+y+z}\)
\(\Rightarrow\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+z+yz}\ge\frac{3}{x+y+z}\)
Đẳng thức xảy ra tại x=y=z=1