cho phương trình:(m2-4)x+2=m
giải phương trình trong mỗi trường hợp sau:
a)m=2
b)m=-2
c)m=-2,2
Cho phương trình m - 4 x + 2 = m . Giải phương trình trong mỗi trường hợp sau: m = -2,2
Khi m = -2,2, phương trình đã cho trở thành:
[ - 2 , 2 2 – 4]x + 2 = -2,2 ⇔ 0,84x + 2 = -2,2
⇔ 0,84x = -2,2 – 2 ⇔ 0,84x = -4,2 ⇔ x = -5
Vậy phương trình đã cho có nghiệm x = -5.
Cho phương trình (m2 – 4)x + 2 = m
Giải phương trình trong mỗi trường hợp sau:
a. m = 2
b. m = - 2
c. m = - 2,2
Giải:
a. Khi m = 2, phương trình đã cho trở thành:
(22−4)x+2=2⇔0x+2=2⇔2=2(22−4)x+2=2⇔0x+2=2⇔2=2
Vậy phương trình đã cho có vô số nghiệm.
b. Khi m = -2, phương trình đã cho trở thành:
[(−2)2−4]x+2=−2⇔0x+2=−2⇔0x=−4[(−2)2−4]x+2=−2⇔0x+2=−2⇔0x=−4
Vậy phương trình đã cho vô nghiệm.
c. Khi m = -2,2, phương trình đã cho trở thành:
[(−2,2)2−4]x+2=−2,2⇔0,84x+2=−2,2⇔0,84x=−2,2−2⇔0,84x=−4,2⇔x=−5[(−2,2)2−4]x+2=−2,2⇔0,84x+2=−2,2⇔0,84x=−2,2−2⇔0,84x=−4,2⇔x=−5
Vậy phương trình đã cho có nghiệm x = -5
mấy bài giải phương trình kiểu vầy ko ai giỏi hơn casio và vinacal đâu. hé hé :)))
Cho phương trình (m2 – 4)x + 2 = m
Giải phương trình trong mỗi trường hợp sau:
a. m = 2
b. m = - 2
c. m = - 2,2
Giải:
a. Khi m = 2, phương trình đã cho trở thành:
(22−4)x+2=2⇔0x+2=2⇔2=2(22−4)x+2=2⇔0x+2=2⇔2=2
Vậy phương trình đã cho có vô số nghiệm.
b. Khi m = -2, phương trình đã cho trở thành:
[(−2)2−4]x+2=−2⇔0x+2=−2⇔0x=−4[(−2)2−4]x+2=−2⇔0x+2=−2⇔0x=−4
Vậy phương trình đã cho vô nghiệm.
c. Khi m = -2,2, phương trình đã cho trở thành:
[(−2,2)2−4]x+2=−2,2⇔0,84x+2=−2,2⇔0,84x=−2,2−2⇔0,84x=−4,2⇔x=−5[(−2,2)2−4]x+2=−2,2⇔0,84x+2=−2,2⇔0,84x=−2,2−2⇔0,84x=−4,2⇔x=−5
Vậy phương trình đã cho có nghiệm x = -5
bài 9 các cặp phương trình sau có tương đương hay không?
d, x+2=0 và \(\dfrac{x}{x+2}=0\)
bài 8 cho phương trình (m\(^2\)-9)x-3=m. Giải phương trình trong các trường hợp sau:
a,m=2 b,m=3 c,m=-3
Bài 9:
Không, vì $x+2=0$ có nghiệm duy nhất $x=-2$ còn $\frac{x}{x+2}=0$ ngay từ đầu đkxđ đã là $x\neq -2$ (cả 2 pt không có cùng tập nghiệm)
Bài 8:
a. Khi $m=2$ thì pt trở thành:
$(2^2-9)x-3=2$
$\Leftrightarrow -5x-3=2$
$\Leftrightarrow -5x=5$
$\Leftrightarrow x=-1$
b.
Khi $m=3$ thì pt trở thành:
$(3^2-9)x-3=3$
$\Leftrightarrow 0x-3=3$
$\Leftrightarrow 0=6$ (vô lý)
c. Khi $m=3$ thì pt trở thành:
$[(-3)^2-9]x-3=-3$
$\Leftrightarrow 0x-3=-3$ (luôn đúng với mọi $x\in\mathbb{R}$)
Vậy pt vô số nghiệm thực.
Cho phương trình m - 4 x + 2 = m . Giải phương trình trong mỗi trường hợp sau: m = -2
Khi m = -2, phương trình đac cho trở thành:
[ - 2 2 – 4]x + 2 = -2 ⇔ 0x + 2 = -2 ⇔ 0x = -4
Vậy phương trình đã cho vô nghiệm.
Cho phương trình m - 4 x + 2 = m . Giải phương trình trong mỗi trường hợp sau: m = 2
Khi m = 2, phương trình đã cho trở thành:
( 2 2 – 4)x + 2 = 2 ⇔ 0x + 2 = 2 ⇔ 2 = 2
Vậy phương trình đã cho có vô số nghiệm.
Cho phương trình :
\(\left(m^2-4\right)x+2=m\)
Giải phương trình trong mỗi trường hợp sau :
a) \(m=2\)
b) \(m=-2\)
c) \(m=-2,2\)
Cho phương trình x2 - 2(m+1)x + m2 +m-1 =0
a) Trong trường hợp phương trình có nghiệm x1, x2 hãy tính
theo m
1/x12 + 1/x22
Viet: `x_1+x_2=2m+2`
`x_1x_2=m^2+m-1`
Có: `1/(x_1^2)+1/(x_2^2)`
`=(x_1^2+x_2^2)/(x_1^2 x_2^2)`
`=( (x_1+x_2)^2-2x_1x_2)/(x_1^2 x_2^2)`
`=((2m+2)^2-2(m^2+m-1))/((m^2+m-1)^2)`
`=(2m^2+6m+6)/(m^4+2m^3−m^2−2m+1)`
- Xét: \(\Delta\)'= [-(m-1)\(^2\)]-(m\(^2\)+m-1)=m\(^2\)-2m+1-m\(^2\)-m+1=-3m+2
- Để pt có nghiệm
<=> \(\Delta\)' \(\ge\) 0
<=> m\(\le\)\(\dfrac{2}{3}\)
- Theo Viete: x1+x2=2m+2 ; x1.x2=m\(^2\)+m+1
- Có \(\dfrac{1}{x1^2}+\dfrac{1}{x2^2}=\dfrac{x1^2+x2^2}{\left(x1.x2\right)^2}=\dfrac{\left(x1+x2\right)^2-2x1.x2}{\left(x1.x2\right)^2}\)
theo Viete (bạn tự thay vào nhé)
Cho phương trình 7x2 + 2(m – 1)x - m2 = 0
Trong trường hợp phương trình có nghiệm, dùng hệ thức Vi-ét, hãy tính tổng các bình phương hai nghiệm của phương trình theo m.
Gọi hai nghiệm của phương trình là x1; x2.
Theo định lý Vi-et ta có:
Khi đó: