\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+...+\frac{1}{531441}\)
Tính nhanh:
\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(\text{Đặt : }A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow3A-A=1-\frac{1}{729}\)
\(\Rightarrow2A=\frac{728}{729}\)
\(\Rightarrow A=\frac{728}{729}:2=\frac{364}{729}\)
\(A=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\)
\(\Rightarrow2A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}\)
\(\Rightarrow2A-A=\frac{1}{3^1}-\frac{1}{3^7}\)
\(\Rightarrow A=\frac{1}{3^1}-\frac{1}{3^7}\)
\(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
Chứng minh rằng:\(\frac{1}{5}+\frac{1}{15}+\frac{1}{25}+....+\frac{1}{1985}< \frac{9}{20}\)
mk làm thế này đúng ko mọi người
Đặt \(A=\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+......+\frac{1}{243}\)
\(A=\frac{1}{3}+\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}\right)+\left(\frac{1}{11}+\frac{1}{13}+\frac{1}{15}+....+\frac{1}{27}\right)+\left(\frac{1}{29}+\frac{1}{31}+\frac{1}{33}+....+\frac{1}{81}\right)+\left(\frac{1}{83}+\frac{1}{85}+\frac{1}{87}+.....+\frac{1}{243}\right)\)
\(=>A>\frac{1}{3}+\frac{1}{9}.3+\frac{1}{27}.9+\frac{1}{81}.27+\frac{1}{243}.81=\frac{1}{3.5}=\frac{5}{3}\)
\(=>A>\frac{5}{3}>\frac{5}{4}=>A< \frac{5}{4}\)
\(=>\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+....+\frac{1}{397}< \frac{5}{4}\)
\(=>1+\frac{1}{3}+\frac{1}{7}+....+\frac{1}{397}< \frac{5}{4}\)
\(=>\frac{1}{5}.\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+....+\frac{1}{397}\right)< \frac{9}{4}.\frac{1}{5}\)
\(=>\frac{1}{5}+\frac{1}{15}+\frac{1}{25}+......+\frac{1}{1985}< \frac{9}{20}\)
Tính nhanh \(\frac{1}{1}+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\)
Gọi tong trên là A
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{81}+\frac{1}{243}+\frac{1}{7129}+\frac{1}{2187}\)
\(3A=\frac{1}{3}+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{729}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\right)-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}-\frac{1}{3}-\frac{1}{9}-\frac{1}{27}-\frac{1}{81}-\frac{1}{243}-\frac{1}{729}-\frac{1}{2187}\)
\(2A=1-\frac{1}{2187}\)
\(2A=\frac{2186}{2187}\)
\(A=\frac{2186}{2187}:2\)
\(A=\frac{1093}{2187}\)
Vậy tổng A = \(\frac{1093}{2187}\)
\(3y=3\cdot\frac{1}{1}+3\cdot\frac{1}{3}+3\cdot\frac{1}{9}+...+3\cdot\frac{1}{729}+3\cdot\frac{1}{2187}\)
\(=3+\frac{1}{1}+\frac{1}{3}...+\frac{1}{729}\)
=> \(3y-y=3+\frac{1}{1}+\frac{1}{3}+..+\frac{1}{729}-\frac{1}{1}-\frac{1}{3}-...-\frac{1}{2187}\)
<=> 2y = 3- 1/2187
=> y = \(\frac{3-\frac{1}{2187}}{2}\)
\(\text{Đ}\text{ặt} A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\)
\(\Rightarrow2187A=2187+729+243+81+27+9+3+1\)
\(\Leftrightarrow2187A=3280\)
\(\Leftrightarrow A=\frac{3280}{2187}\)
Chắc chắn 100% luôn
\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
Tính nhanh na
tổng các ps trên là ; \(\frac{364}{729}\)
đặt biểu thức đó là X
ta có :
\(3X=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow3X-X=1-\frac{1}{729}\)
\(\Rightarrow X=\frac{728}{729}.\frac{1}{2}=\frac{364}{729}\)
Tính nhanh tổng sau \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
=\(1+\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\)
=\(\frac{3^6}{3^6}+\frac{3^5}{3^6}+\frac{3^4}{3^6}+\frac{3^3}{3^6}+\frac{3^2}{3^6}+\frac{3^1}{3^6}+\frac{3^0}{3^6}\)
=\(\frac{3^6+3^5+3^4+3^3+3^2+3+1}{3^6}\)
=\(\frac{729+243+81+27+9+3}{729}\)
=\(\frac{1093}{729}\)
nha.
1+1/3+1/9+1/27+1/81+1/243+1/729
=729/729+243/729+81/729+27/729+9/729+3/729+1/729
=1093/729
Tính nhanh:
\(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
Giúp mk nha!
\(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(=\frac{729}{729}+\frac{243}{729}+\frac{81}{729}+\frac{27}{729}+\frac{9}{729}+\frac{3}{729}+\frac{1}{729}\)
\(=\frac{729+243+81+27+9+3+1}{729}\)
\(=\frac{1093}{729}\)
gọi biểu thức trên là A
ta có : A = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\) (1)
\(\frac{1}{3}\)x A =\(\frac{1}{3}\)+\(\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\) (2)
lấy (1) - (2)
\(\frac{2}{3}xA\)= 1 - \(\frac{1}{2187}\)
\(\frac{2}{3}xA\)= \(\frac{2186}{2187}\)
A = \(\frac{2186}{2187}:\frac{2}{3}\)
A = \(\frac{1093}{729}\)
Đặt\(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(\Rightarrow3A=3+1+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow3A-A=3-\frac{1}{729}\)
\(\Rightarrow2A=\frac{2186}{729}\)
\(\Rightarrow A=\frac{1093}{729}\)
A = ( \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\) ) \(\frac{729}{364}+100:\subset5X\left(3-1\right)\)
Tìm a
\(\left(a+\frac{1}{1.3}\right)+\left(a+\frac{1}{3.5}\right)+\left(a+\frac{1}{5.7}\right)+...+\left(a+\frac{1}{23.25}\right)=11.a+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right).\)\(\left(a+\frac{1}{1.3}\right)+\left(a+\frac{1}{3.5}\right)+...+\left(a+\frac{1}{23.25}\right)=11a+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(\Rightarrow12a+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11a+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)\)(1)
Ta có \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\right)=\frac{1}{2}\left(1-\frac{1}{25}\right)=\frac{1}{2}.\frac{24}{25}=\frac{12}{25}\)
Lại có \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}=\frac{3\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)}{2}\)
\(=\frac{1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}-\frac{1}{3^5}}{2}=\frac{1-\frac{1}{3^5}}{2}=\frac{1}{2}-\frac{1}{3^5.2}\)
Khi đó (1) <=> \(12a-\frac{12}{25}=11a+\frac{1}{2}-\frac{1}{3^5.2}\)
=> \(a=\frac{12}{25}+\frac{1}{2}-\frac{1}{3^5.2}=\frac{49}{50}-\frac{1}{3^5.2}=\frac{49}{50}-\frac{1}{486}=\frac{23764}{24300}\)
Gọi \(A=\left(a+\frac{1}{1.3}\right)+\left(a+\frac{1}{3.5}\right)+\left(a+\frac{1}{5.7}\right)+...+\left(a+\frac{1}{23.25}\right)\)
\(\Rightarrow A=12a+\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{23.25}\right)\)
\(\Rightarrow A=12a+\left[\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{23.25}\right)\right]\)
\(\Rightarrow A=12a+\left[\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\right)\right]\)
\(\Rightarrow A=12a+\left[\frac{1}{2}\left(1-\frac{1}{25}\right)\right]\)
\(\Rightarrow A=12a+\left(\frac{1}{2}.\frac{24}{25}\right)\)
\(\Rightarrow A=12a+\frac{12}{25}\)
Gọi \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow B=\frac{1}{1.3}+\frac{1}{3.3}+\frac{1}{9.3}+\frac{1}{27.3}+\frac{1}{81.3}\)
\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)
\(\Rightarrow3B-B=1-\frac{1}{243}\)
\(\Rightarrow2B=\frac{242}{243}\)
\(\Rightarrow B=\frac{121}{243}\)
\(\Rightarrow A=11a+B\)
\(\Rightarrow12a+\frac{12}{25}=11a+\frac{121}{243}\)
\(\Leftrightarrow12a-11a=\frac{121}{243}-\frac{12}{25}\)
\(\Leftrightarrow a=\frac{109}{6075}\)