có bao nhiêu hình tam giác, to hay nhỏ đều được
Chia một hình tam giác đều thành các tam giác đều nhỏ hơn, hỏi có ít nhất là bao nhiêu tam giác đều nhỏ?
( bài này không có hình )
Một sợi dây có chiều 6 mét, được cắt thành hai phần. Phần thứ nhất uốn thành hình tam giác đều, phần thứ hai uốn thành hình vuông. Hỏi cạnh của hình tam giác đều bằng bao nhiêu để tổng diện tích hai hình thu được là nhỏ nhất
A. 12 4 + 3 m .
B. 36 3 9 + 4 3 m .
C. 18 9 + 4 3 m .
D. 18 3 4 + 3 m .
Một sợi dây có chiều 6 mét, được cắt thành hai phần. Phần thứ nhất uốn thành hình tam giác đều, phần thứ hai uốn thành hình vuông. Hỏi cạnh của hình tam giác đều bằng bao nhiêu để tổng diện tích hai hình thu được là nhỏ nhất?
A. 12 4 + 3 m .
B. 36 3 9 + 4 3 m .
C. 18 9 + 4 3 m .
D. 18 3 4 + 3 m .
Đáp án C
Cắt sợi dây 6 mét đã cho thành hai phần có độ dài lần luột là x mét và 6-x mét 0 < x < 6 . Phần thứ nhất có độ dài x mét được uốn thành hình tam giác đều cạnh bằng x 3 mét. Phần thứ hai có độ dài 6-x mét được uốn thành hình vuông cạnh bằng 6 − x 4 mét.
Diện tích phần I là S 1 = x 3 2 . 3 4 = x 2 3 36 m 2 .
Diện tích phần II là S 2 = 6 − x 4 2 m 2 .
Tổng diện tích hai phần là S x = S 1 + S 2 = x 2 3 36 + 6 − x 4 2 m 2 với x ∈ 0 ; 6
Đạo hàm S ' x = x 3 18 − 6 − x 8 ; S ' x = 0 ⇔ x = 54 9 + 4 3 ∈ 0 ; 6 . Lập bảng biến thiên của hàm số S x trên khoảng 0 ; 6 , ta thấy min S x = S 54 9 + 4 3 .
Khi đó cạnh của tam giác đều bằng 18 9 + 4 3 m .
một sợi dây có chiều dài 6m, được chia thành 2 phần . Phần thứ nhất được uốn thành hình tam giác đều, phần thứ hai được uốn thành hình vuông. Hỏi độ dài cạnh hình tam giác đều bằng bao nhiêu để diện tích 2 hình thu được là nhỏ nhất?
Một sợi dây có chiều dài L (m) được chia thành ba phần. Phần thứ nhất được uốn thành hình vuông, phần thứ hai được uốn thành tam giác đều có cạnh gấp hai lần cạnh của hình vuông, phần thứ ba được uốn thành hình tròn (như hình vẽ).
Hỏi độ dài cạnh hình tam giác đều bằng bao nhiêu để tổng diện tích 3 hình thu được là nhỏ nhất?
A. 7 L 49 + 3 + 1 π m
B. 5 L 49 + 3 + 1 π m
C. 5 L 25 + 3 + 1 π m
D. 7 L 25 + 3 + 1 π m
Chọn đáp án C
Gọi độ dài cạnh của hình vuông là x (m) thì độ dài cạnh tam giác đều là 2x (m).
Chiều dài phần dây được uống thành hình vuông (chính là chu vi hình vuông) là 4x (m); chiều dài phần dây được uốn thành tam giác đều (chính là chu vi hình tam giác đều) là 6x(m) .
Suy ra chiều dài phần dây được uốn thành hình tròn là L - 4 x - 6 x = L - 10 x ( m )
Từ đó ta có x ∈ 0 ; L 10
Gọi r là bán kính của đường tròn thì chu vi đường tròn là
Tổng diện tích của ba hình là
Xét hàm số
trên 0 ; L 10
Ta có
Lập bảng biến thiên ta thấy
Vậy tổng diện tích của ba hình thu được nhỏ nhất khi x = 5 L 2 25 + 1 + 3 π
suy ra độ dài cạnh của tam giác đều là 2 x = 5 L 25 + 1 + 3 π
chia tam giác thành đều thành các tam giác đều nhỏ hơn ,hỏi có ít nhất là bao nhiêu tam giác đều nhỏ
Cho một đa giác đều 24 đỉnh. Hỏi a.Đa giác có bao nhiêu đường chéo. Từ các đỉnh của đa giác lập được bao nhiêu: b,Tam giác vuông c,Tam giác đều d,Tứ giác e,Hình chữ nhật mà không phải là hình vuông
a: Số đường chéo là:
\(\dfrac{24\left(24-3\right)}{2}=12\cdot21=252\)
b: 24 đỉnh =>12 đường kính
chọn 1 đường kính =>Sẽ có 22 điểm còn lại
=>Có 22*12=264 tam giác vuông
Cho một đa giác đều 24 đỉnh. Hỏi a.Đa giác có bao nhiêu đường chéo. Từ các đỉnh của đa giác lập được bao nhiêu: b,Tam giác vuông c,Tam giác đều d,Tứ giác e,Hình chữ nhật mà không phải là hình vuông
a: Số đường chéo là 24*21/2=21*12=336(đường chéo)
b: Số tam giác vuông tạo thành là:12*22=264 tam giác
Cho một đa giác đều 24 đỉnh. Hỏi a.Đa giác có bao nhiêu đường chéo. Từ các đỉnh của đa giác lập được bao nhiêu: b,Tam giác vuông c,Tam giác đều d,Tứ giác e,Hình chữ nhật mà không phải là hình vuông
a. Để tính số đường chéo của một đa giác đều n đỉnh, ta dùng công thức: số đường chéo = n(n-3)/2. Áp dụng vào trường hợp này, ta có số đường chéo của đa giác đều 24 đỉnh là: 24(24-3)/2 = 276 đường chéo.
b. Để lập được một tam giác vuông từ các đỉnh của đa giác đều 24 đỉnh, ta cần chọn 3 đỉnh sao cho 2 trong số đó nằm trên cùng một đường kính của đa giác. Có tổng cộng 24 cách chọn đỉnh trên đường kính và vì mỗi tam giác vuông sẽ được lập bởi 2 đường kính khác nhau, nên số tam giác vuông lập được từ các đỉnh của đa giác đều 24 đỉnh là: 24 x 12 = 288 tam giác vuông. Tuy nhiên, một số tam giác vuông sẽ bị lặp lại khi ta quay đa giác, do đó số tam giác vuông duy nhất là: 288/24 = 12 tam giác vuông.
c. Để lập được một tam giác đều từ các đỉnh của đa giác đều 24 đỉnh, ta cần chọn 3 đỉnh liên tiếp trên đường tròn ngoại tiếp đa giác. Có tổng cộng 24 cách chọn 3 đỉnh liên tiếp, do đó số tam giác đều lập được từ các đỉnh của đa giác đều 24 đỉnh là: 24 tam giác đều.
d. Để lập được một tứ giác từ các đỉnh của đa giác đều 24 đỉnh, ta cần chọn 4 đỉnh bất kỳ. Có tổng cộng C(24,4) cách chọn 4 đỉnh, do đó số tứ giác lập được từ các đỉnh của đa giác đều 24 đỉnh là: C(24,4) = 10626 tứ giác.
e. Để lập được một hình chữ nhật từ các đỉnh của đa giác đều 24 đỉnh, ta cần chọn 4 đỉnh sao cho 2 đỉnh đối diện của hình chữ nhật nằm trên cùng một đường kính của đa giác. Có tổng cộng 24 cách chọn đỉnh trên đường kính và vì mỗi hình chữ nhật sẽ được lập bởi 2 đường kính khác nhau, nên số hình chữ nhật lập được từ các đỉnh của đa giác đều 24 đỉnh là: 24 x 12 = 288 hình chữ nhật. Tuy nhiên, trong số đó có 24 hình vuông, do đó số hình chữ nhật mà không phải là hình vuông là: 288 - 24 = 264 hình chữ nhật.
Cho một đa giác đều 24 đỉnh. Hỏi a.Đa giác có bao nhiêu đường chéo. Từ các đỉnh của đa giác lập được bao nhiêu: b,Tam giác vuông c,Tam giác đều d,Tứ giác e,Hình chữ nhật mà không phải là hình vuông
Spo
d: Số tứ giác tạo thành là: \(C^4_{24}\)