Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Charlet
Xem chi tiết
Phạm Bá Tâm
Xem chi tiết
Nguyễn Đăng Nhân
26 tháng 2 2022 lúc 16:57

 Xét số hạng tổng quát ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)< \sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\sqrt{n}\cdot\frac{2}{\sqrt{n}}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)

Áp dụng vào bài tập, ta có:

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+...+\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)

\(=2-\frac{2}{\sqrt{n+1}}< 2\left(đpcm\right)\)

Khách vãng lai đã xóa
Huy vũ quang
Xem chi tiết
Charlet
Xem chi tiết
Châu Đặng Huỳnh Bảo
Xem chi tiết
Nguyễn Thiên Nhi
Xem chi tiết
Mèo' s Karry' s
11 tháng 6 2019 lúc 21:10

Ta có : a= \(\sqrt[3]{2-\sqrt{3}}\)  + \(\sqrt[3]{2+\sqrt{3}}\)

Suy ra a^3 = 3a +4  => (a^2 -3)a=4  

<=> \(\left(\frac{4}{a^2-3}\right)^3\)= a^3  <=>\(\frac{64}{\left(a^2-a\right)^3}\) -3a = 4   

mà 4 nguyên suy ra đpcm

Darlingg🥝
2 tháng 8 2019 lúc 6:52

Ta có \(a=3\sqrt{2-\sqrt{3}}+\sqrt{3}^32_{\sqrt{3}}\)

Suy ra ta được 3= 3a + 4 => (a ngũ 2 - 3)a =4

Vậy kết quả khi tính đ là

=> (4 trên a2 - 3) trên 3 =a ngũ 3 <=> 64 trên a 2 - a3 - 3a =4

Đinh Thị Ngọc Anh
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Copxki Minh
23 tháng 11 2020 lúc 23:52

1)

Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)

Dấu "=" xảy ra khi a=b=c

Khách vãng lai đã xóa
Copxki Minh
24 tháng 11 2020 lúc 9:53

2)

\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)

Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)

\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)

Khách vãng lai đã xóa
Kurosaki Akatsu
Xem chi tiết
Nguyễn Thiều Công Thành
16 tháng 8 2017 lúc 22:33

vd:n=-0,8 thì sai

alibaba nguyễn
17 tháng 8 2017 lúc 9:17

Chứng minh 

\(\sqrt[3]{\left(n+1\right)^2}-\sqrt[3]{n^2}< \frac{2}{3\sqrt[3]{n}}\)

\(\Leftrightarrow3\sqrt[3]{n\left(n+1\right)^2}< 2+3n\)

Lập phương 2 vế rồi rút gọn được

\(\Leftrightarrow9n+8>0\)

Đúng với mọi n dương. Ta có ĐPCM.

Cái còn lại tương tự