Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Xuân Bách
Xem chi tiết
Lê Thị Thúy Hường
18 tháng 1 2016 lúc 9:11

đề bài sai, phải là 1/x+1/y+1/z=1/3 chứ

tuấn kiê
18 tháng 1 2016 lúc 8:28

em mới học lớp 6 nha

sory

Bùi Danh Nghệ
18 tháng 1 2016 lúc 8:56

tic cho mình hết âm nhé

Cao Thị Trà My
Xem chi tiết
Cao Thị Trà My
Xem chi tiết
Thu Hiền Nguyễn Thị
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Akai Haruma
21 tháng 5 2021 lúc 23:19

Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.

1.

Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$. 

Khi đó: $a+b+c=0\Rightarrow a+b=-c$

$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$

$=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$

$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$

$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$

$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$

Ta có đpcm.

Akai Haruma
21 tháng 5 2021 lúc 23:22

Bài 2:

Áp dụng kết quả của bài 1:

Mẫu:

$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$

Tử: 

Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$

$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$

$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x-y)(y-z)(z-x)(2)$

Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)

 

Akai Haruma
21 tháng 5 2021 lúc 23:23

Bài 3:

\(ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{2^2-2}{2}=1\)

Do đó:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=\frac{1}{abc}\)

Ta có đpcm.

Diệp Nguyễn
Xem chi tiết
Mathematics❤Trần Trung H...
22 tháng 5 2019 lúc 18:25

Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.

Mathematics❤Trần Trung H...
22 tháng 5 2019 lúc 18:25

Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.

Mathematics❤Trần Trung H...
22 tháng 5 2019 lúc 18:25

Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.

Trần Tuấn Trọng
Xem chi tiết
OoO_Nhok_Lạnh_Lùng_OoO
2 tháng 9 2017 lúc 14:48

 với mọi x, y, z ta có: 

(x-y)^2 +(y-z)^2+ (z-x)^2>=0 

<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0 

<=>x^2 + y^2 +z^2 - xy -yz -zx >=0 

<=>(x+y+z)^2 >= 3(x+y+z) 

<=>[(x+y+z)^2]/3 >= xy+yz+ zx 

=>xy +yz + zx <=3 

dấu = xảy ra khi x=y=z =1

hình như bài của mik làm có j đó sai sai

Steolla
2 tháng 9 2017 lúc 14:49

với mọi x, y, z ta có: 

(x-y)^2 +(y-z)^2+ (z-x)^2>=0 

<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0 

<=>x^2 + y^2 +z^2 - xy -yz -zx >=0 

<=>(x+y+z)^2 >= 3(x+y+z) 

<=>[(x+y+z)^2]/3 >= xy+yz+ zx 

=>xy +yz + zx <=3 

dấu = xảy ra khi x=y=z =1

Nhók Bạch Dương
2 tháng 9 2017 lúc 15:06

với mọi x, y, z ta có:

(x-y)^2 +(y-z)^2+ (z-x)^2>=0

<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0

<=>x^2 + y^2 +z^2 - xy -yz -zx >=0

<=>(x+y+z)^2 >= 3(x+y+z)

<=>[(x+y+z)^2]/3 >= xy+yz+ zx

=>xy +yz + zx <=3

dấu = xảy ra khi x=y=z =1 

Thái Phương
Xem chi tiết
Phạm Tường Lan Vy
Xem chi tiết