cm với mọi số n lẻ thì n2+4n+5 chi hết cho8
Chứng minh rằng với mọi số tự nhiên lẻ n:
1. n2 + 4n + 8 chia hết cho 8
2. n3 + 3n2 - n - 3 chia hết cho 48
a.
Đề bài sai, ví dụ \(n=1\) lẻ nhưng \(1^2+4.1+8=13\) ko chia hết cho 8
b.
n lẻ \(\Rightarrow n=2k+1\)
\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48
Chứng minh rằng với mọi số n lẻ thì n2 + 4n + 5 không chia hết cho 8
1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6
2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8
3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9
4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n
6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n
7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n
8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49
9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương
10/CMR với mọi số tự nhiên n>1:
a/ số n^4 +4 là hợp số
b/ số n^4+4k^4 là hợp số (k là số tự nhiên)
11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5
12/ Số 2^32+1 có là số nguyên tố không?
13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)
14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n
15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia
sao dài dòng quá vậy, như thế thì ai mà làm nổi, bạn phải hỏi từng bài 1 chứ
Nhìn là muốn chạy rùi
^-^
p thử lên mạng mà tra từng câu 1 mik nghĩ là có
1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6
2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8
3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9
4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n
6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n
7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n
8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49
9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương
10/CMR với mọi số tự nhiên n>1:
a/ số n^4 +4 là hợp số
b/ số n^4+4k^4 là hợp số (k là số tự nhiên)
11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5
12/ Số 2^32+1 có là số nguyên tố không?
13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)
14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n
15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia
Làm 1;2;3;4 bài 1 lần thôi chứ sao 15 bài 1 lúc ?
Nghĩ ai rảnh mà giải ah ?
chứng minh rằng n^2+4n+5 không chia hết cho 8 ( với mọi số n lẻ )
Ta có:
n2 + 4n + 5
= n2 - 1 + 4n + 6
= (n - 1).(n + 1) + 2.(2n + 3)
Do n lẻ nên n - 1 và n + 1 là 2 số chẵn liên tiếp
=> (n - 1).(n + 1) chia hết cho 8
Mà 2n + 3 lẻ => 2n + 3 không chia hết cho 4 => 2.(2n + 3) không chia hết cho 8
=> (n - 1).(n + 1) + 2.(2n + 3) không chia hết cho 8
=> n2 + 4n + 5 không chia hết cho 8
=> đpcm
Ủng hộ mk nha ^-^
Chứng minh bằng phản chứng: Với mọi số nguyên dương n nếu n2 là số lẻ thì n là số lẻ.
Mình mới học bài này nên trình bày chi tiết ra để mình hiểu đc :))
cmr n là số nguyên tố lẻ thì n2 +4n+5 ko chia hết cho8
2)cmr 1 số tự nhiên gồm 27c/s 1 thì chia hết cho 27
3) 1 số tự nhiên A có 4 c/s . chữ số hang đơn vị lớn hơn 3 lần c/s hàng trăm và c/s hàng chục lớn gấp 8 lần c/s hàng nghìn ,biết Achia hết cho9 .tìm A
giải chi tiết giùm mình nhé
Chứng minh : n2+4n+5 không chia hết cho 8 với mọi n là số lẻ
Ta có:
n2 + 4n + 5
= n2 - 1 + 4n + 6
= (n - 1).(n + 1) + 2.(2n + 3)
Do n lẻ nên n - 1 và n + 1 là 2 số chẵn liên tiếp
=> (n - 1).(n + 1) chia hết cho 8
Mà 2n + 3 lẻ => 2n + 3 không chia hết cho 4 => 2.(2n + 3) không chia hết cho 8
=> (n - 1).(n + 1) + 2.(2n + 3) không chia hết cho 8
=> n2 + 4n + 5 không chia hết cho 8
=> đpcm
Ủng hộ mk nha ^-^
Giải:
Đặt \(n=2k+1\) (\(n\) lẻ) ta có:
\(n^2+4n+5=\left(2k+1\right)^2+4\left(2k+1\right)+5=\left(4k^2+4k+1\right)+\left(8k+4\right)+5\)
\(=\left(4k^2+4k\right)+\left(8k+8\right)+2=4k\left(k+1\right)+8\left(k+1\right)+2\)
Vì \(k\left(k+1\right)⋮2\Leftrightarrow\hept{\begin{cases}4k\left(k+1\right)⋮8\\8\left(k+1\right)⋮8\end{cases}}\) Mà \(2\) không chia hết cho \(8\)
Nên \(n^2+4n+5\) không chia hết cho \(8\) với mọi \(n\) là số lẻ (Đpcm)
Ta có:
\(n^2+4n+5\)
\(=n^2-1+4n+6\)
\(=\left(n-1\right).\left(n+1\right)+2.\left(2n+3\right)\)
Do \(n\)lẻ nên \(n-1\)và \(n+1\)là hai số chẵn liên tiếp.
\(\Rightarrow\left(n-1\right).\left(n+1\right)\)chia hết cho 8
Mà \(2n+3\)lẻ \(\Rightarrow2n+3\)không chia hết cho 4 \(\Rightarrow2.\left(2n+3\right)\)không chia hết cho 8.
\(\Rightarrow\left(n-1\right).\left(n+1\right)+2.\left(2n+3\right)\)không chia hết cho 8.
\(\Rightarrow n^2+4n+5\)không chia hết cho 8.
\(\RightarrowĐpcm\)