\(\frac{2016-4032:\left(m-2015\right)}{2014x2015x2016}\)
\(\frac{2016-4032:\left(m-2015\right)}{2014x2015x2016}\)
Tìm m sao cho giá trị của biểu thức là nhỏ nhất ..
Xét đa thức
\(P\left(x\right)=\left(1-x+x^2-x^3+...-x^{2015}+x^{2016}\right)\left(1+x+x^2+x^3+...+x^{2015}+x^{2016}\right)\)
Khai triển và ước lượng các hạng tử đồng dạng có thể viết
\(P\left(x\right)=a_0+a_1x+a_2x^2+...+a_{4032}x^{4032}\)Tính \(a_{2017}\)
Gửi bạn ... nè :
B=1/1*3+1/3*5/+1/5*7+....+1/2015*2016
\(B=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2015.2016}\)
\(B=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)
\(B=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2016}\right)\)
\(B=\frac{1}{2}.\frac{2015}{2016}\)
\(B=\frac{2015}{4032}\)
Uchiha Sasuke gửi cho ai vậy ??????
NHớ ****
\(\left(\frac{1}{2}+\frac{2015}{2016}+\frac{2016}{2017}+1\right)\left(\frac{2105}{2016}+\frac{2016}{2017}+\frac{7}{22}\right)-\left(\frac{1}{2}+\frac{2015}{2016}+\frac{2016}{2017}\right)\left(\frac{2015}{2016}+\frac{2016}{2017}+\frac{7}{22}+1\right)\)
\(A=-\frac{1}{2}\left(17,5-7,5\right)-\frac{2015}{2016}\left(2018-2\right)\)
=> \(A=-\frac{1}{2}\left(10\right)-\frac{2015}{2016}\left(2016\right)=-5-2015=-2020\)
Trả lời :
- 2 bn kia ở trong câu hỏi này có ai làm đúng đâu.
- Chúc bạn học tốt !
- Tk cho mk nha !
Cho a,b,c >0; biết \(\hept{\begin{cases}a^2=b+4032\\x+y+z=a\\x^2+y^2+z^2=b\end{cases}}\)
\(P=x\sqrt{\frac{\left(2016+y^2\right)\left(2016+z^2\right)}{2016+x^2}}+y\sqrt{\frac{\left(2016+z^2\right)\left(2016+x^2\right)}{\left(2016+y^2\right)}}+z\sqrt{\frac{\left(2016+x^2\right)\left(2016+y^2\right)}{\left(2016+z^2\right)}}\)
Chứng minh giá trị của P không phụ thuộc vào x,y,z
Bạn thêm điều kiện x,y,z lớn hơn 0 nhé :)
Từ giả thiết ta suy ra : \(a^2=b+4032\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+4032\)
\(\Rightarrow xy+yz+zx=2016\)thay vào :
\(x\sqrt{\frac{\left(2016+y^2\right)\left(2016+z^2\right)}{2016+x^2}}=x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}\)
\(=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+y\right)\left(z+x\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=x\left|y+z\right|=xy+xz\)vì x,y,z > 0
Tương tự : \(y\sqrt{\frac{\left(2016+z^2\right)\left(2016+x^2\right)}{2016+y^2}}=xy+zy\)
\(z\sqrt{\frac{\left(2016+x^2\right)\left(2016+y^2\right)}{2016+z^2}}=zx+zy\)
Suy ra \(P=2\left(xy+yz+zx\right)=2.2016=4032\)
Tính M , biết :
\(M=1+\frac{1}{2}\times\left(1+2\right)+\frac{1}{3}\times\left(1+2+3\right)+\frac{1}{4}\times\left(1+2+3+4\right)+...+\frac{1}{2016}\times\left(1+2+3+4+...+2015+2016\right).\)
tính
A=\(\left(\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2016}\right)\left(1+\frac{1}{2}+...+\frac{1}{2015}\right)\left(1+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)\)
Cho f(x) = \(\frac{1}{2x-2x^2-1}\)
Tính giá trị biểu thức : \(f\left(\frac{1}{2016}\right)+f\left(\frac{2}{2016}\right)+f\left(\frac{3}{2016}\right)+...+f\left(\frac{2015}{2016}\right)+f\left(\frac{2016}{2016}\right)\)
Ta có:
f(x)=\(\frac{x^2}{2x-2x^2-1}=\frac{x^2}{-\left(x-1\right)^2-x^2}\)
tiếp tục giờ ta tìm f(1-x) mục đích của việc này là để ghép cặp vì bạn để ý ghép sao cho tổng của tử bằng mẫu. Vây f(1-x)=\(\frac{\left(x-1\right)^2}{-x^2-\left(x-1\right)^2}\)
từ đây suy ra f(x)+f(1-x)= -1( bạn cũng xem lại đề cho mình nha tử là x^2 chứ không phải là 1 )
Giờ ta ghép cặp như sau: ta loại trừ f(\(\frac{1008}{2016}\)) và f(1) ra 1 ở đây mình rút gọn 2016/2016. 2 số này sẽ dùng để thay vào tính: Còn các số còn lại sẽ được ghép làm 1007 cặp mà mỗi cặp bằng -1 do cmt. vậy mình gọi cái cần tính là A thì
=> A=-1.1007-1-0,5=-1008,5
Bạn xem lại hộ xem thử đề đúng không nhé b. Sao không thấy có cơ sở để tính tổng này??