So sánh: \(\frac{73}{74}\) với \(\frac{2015}{2016}\)
So sánh:
A=
\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2015}\). Hãy so sánh A với 3
Cho \(A=\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}\) .Hãy so sánh A với 3
Tạm thời chỉ nghĩ ra được cách này -_-
Ta có :
\(A=\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}\)
\(A=\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2014+2}{2014}\)
\(A=\frac{2015}{2015}-\frac{1}{2015}+\frac{2016}{2016}-\frac{1}{2016}+\frac{2014}{2014}+\frac{2}{2014}\)
\(A=1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{2}{2014}\)
\(A=\left(1+1+1\right)-\left(\frac{1}{2015}+\frac{1}{2016}-\frac{2}{2014}\right)\)
\(A=3-\left[\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2014}+\frac{1}{2014}\right)\right]\)
Lại có :
\(\frac{1}{2015}< \frac{1}{2014}\)
\(\frac{1}{2016}< \frac{1}{2014}\)
\(\Rightarrow\)\(\frac{1}{2015}+\frac{1}{2016}< \frac{1}{2014}+\frac{1}{2014}\)
\(\Rightarrow\)\(\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2014}+\frac{1}{2014}\right)< 0\)
\(\Rightarrow\)\(A=3-\left[\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2014}+\frac{1}{2014}\right)\right]>3\)
Vậy \(A>3\)
Chúc bạn học tốt ~
So sánh \(A=\frac{2014}{2015}+\frac{2015}{2016}\)với \(y=\frac{\frac{2014}{2015}}{\frac{2015}{2016}}\)
\(y=\frac{2014}{\frac{2015}{\frac{2015}{2016}}}=\frac{2014}{2015}.\frac{2015}{2016}=\frac{1007}{1008}=1-\frac{1}{2008}\)
\(\frac{2014}{2015}=1-\frac{1}{2015}\)
Vì \(\frac{1}{2008}>\frac{1}{2015}\)nên \(\frac{1007}{1008}< \frac{2014}{2015}\)
Vậy A>y
y < 1 < A.
Bạn chứng minh điều đó nhé!
So sánh S với 3, biết \(S=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2015}\)
\(A=\frac{15}{14}+\frac{16}{15}+\frac{17}{16}+\frac{18}{17}\) SO SÁNH A VỚI 4
\(B=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2018}{2019}\)SO SÁNH B VỚI 3
Hai bài này bạn tính ra là xong mà
Cần gì phải hỏi
Dễ mà
A>4 nha
còn B<3
câu này mk làm ở trước ấy
câu B có đổi là 3/2019 thành 1/2019
so sánh
\(\frac{64}{85}va\frac{73}{81}\)
\(\frac{67}{77}va\frac{73}{83}\)
\(\frac{11}{32}va\frac{16}{49}\)
\(\frac{2016\cdot2017-1}{216\cdot2017}va\frac{2015\cdot2016-1}{2015\cdot2016}\)
giúp mk nha cần gấp
ai nhanh nhất mk tk cho
\(A=\frac{2014}{2015}+\frac{2015}{2016}+\frac{2017}{2015}\)
So sánh A với 3.
A-3=2014/2015+2015/2016+2017/2015-3
=>A-3=-1/2015-1/2016+2/2015
=>A-3=1/2015-1/2016
Vì 1/2015>1/2016
=>1/2015-1/2016>0
=>A-3>0
=>A>3
1) CMR : A=(n+2015)(n+2016) + n2 + n chia hết cho 2 với n ϵ N
2) So sánh :
P = \(\frac{2013}{2014^{2013}}+\frac{2014}{2015^{2014}}+\frac{2015}{2016^{2015}}+\frac{2016}{2017^{2016}}\) và
Q = \(\frac{2014}{2017^{2016}}+\frac{2013}{2016^{2015}}+\frac{2016}{2015^{2014}}+\frac{2015}{2014^{2013}}\)
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
So sánh 2 phân số sau\(\frac{2014+2015+2016}{2015+2016+2017}\) và \(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)
2014+2015+2016/2015+2016+2017<2014/2015+2015/2016+2016/2017