tính tỉ số a/b
a=1/51+1/52+1/53+....+1/100
b=1/1x2+1/3x4+....+1/99x100
(1/51+1/52+1/53+....+1/100) : (1/1x2+1/3x4+...+1/99x100)
Có \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}=+....+\frac{1}{99}-\frac{1}{100}\)
\(=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
=\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
= \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
=> \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right):\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=1\)
Tính:
(1/51+1/52+1/53+...+1/100):(1/1x2+1/3x4+1/5x6+...+1/99x100)
Tìm x biết (1/1x2+1/3x4+…+1/99x100)xX=2012/51+2012/52+…+2012/99+2012/100.
ta có:\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+...+\frac{1}{100}\)
\(\frac{2012}{51}+\frac{2012}{52}+...+\frac{2012}{100}=2012\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)
bài toán được viết lại như sau:
\(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right).x=2012\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)
\(\Rightarrow x=2012\left(\frac{1}{51}+...+\frac{1}{100}\right):\left(\frac{1}{51}+...+\frac{1}{100}\right)\)
\(\Rightarrow x=2012\)
vậy x=2012
đây là phân số nhé: làm giúp mi~nhon
1. tính nhanh
1/1x2 + 1/2x3 + 1/3x4 + ....... + 1/99x100
thanks
= 1/1-1/2+1/2-1/3+1/3-...-1/100
= 1 - 1/100
= 99/100
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
tìm số nguyên a biết
( 1/1x2+1/3x4+.....+1/99x100) x a =2012/51+2012/52+....+2012/100
giải nhanh lên nhé các bạn,chi tiết đó nha
A= 1/1x2+ 1/2x3 + 1/3x4 +............+ 1/99x100 và 1
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+....+\dfrac{1}{99\cdot100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}\right)-\dfrac{1}{100}\)
\(A=1+0-\dfrac{1}{100}\)
\(A=1-\dfrac{1}{100}< 1\)
\(\Rightarrow A< 1\)
A=1/1x2+1/2x3+1/3x4+......+1/99x100
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}\)
=\(\frac{99}{100}\)
A = 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/99.100
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + .... + 1/99 - 1/100
A = 1 - 1/100
A = 99/100
A= 1/1x2 + 1/2x3 + 1/3x4 + .........+1/99x100
A=1/1x2+1/2x3+...+1/99x100
A=1-1/2+1/2-1/3+1/3-...+1/99-1/00
A=1-1/100
A=99/100
Chứng minh B/A thuộc Z
A= 1/1x2+1/2x3+...+1/99x100
B=2017/51+2017/52+...+2017/100
A=1 - 1/2 + 1/2 - 1/3 +...+ 1/99 - 1/100
A=1 - 1/100
A=100/100 - 1/100
A=99/100