tinh 1+1.1!+2.2!+.....+100.100!
tính tổng D=1+1.1!+2.2!+3.3!+...+100.100!
E= 1.1 +2.2+ 3.3 +...+ 100.100
A =1.1+ 2.2+ 3.3+ 4.4+ ..... +99.99+ 100.100
Ta có :
Đặt A=1.1+2.2+3.3+....+100.100
=>A=1.(2-1)+2.(3-1)+3.(4-1)+.....+100.(101-1)
=>A=1.2-1+2.3-2+3.4-3+.....+100.101-100
=>A=1.2+2.3+3.4+...+100.101-(1+2+3+....+100)
Đặt B=1.2+2.3+3.4+...+100.101
=>3B=1.2.3+2.3.3+3.4.3+.....+100.101.3
=>3B=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+100.101.(102-99)
=>3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....+99.100.101+100.101.102-99.100.101
=>3B=100.101.102
=>B=343400
Đặt C=1+2+3+4+5+.....+100=(1+100).100:2=5050
=>A=343400-5050=338350
cho mk 1 tích nha
Ta có :
Đặt A=1.1+2.2+3.3+....+100.100
=>A=1.(2-1)+2.(3-1)+3.(4-1)+.....+100.(101-1)
=>A=1.2-1+2.3-2+3.4-3+.....+100.101-100
=>A=1.2+2.3+3.4+...+100.101-(1+2+3+....+100)
Đặt B=1.2+2.3+3.4+...+100.101
=>3B=1.2.3+2.3.3+3.4.3+.....+100.101.3
=>3B=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+100.101.(102-99)
=>3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....+99.100.101+100.101.102-99.100.101
=>3B=100.101.102
=>B=343400
Đặt C=1+2+3+4+5+.....+100=(1+100).100:2=5050
=>A=343400-5050=338350
Học tốt<3
Ai giúp mình câu này đi
Biết n!=1.2.3.....n.Tính :1+1.1!+2.2!+3.3!+...+100.100!
Giai:1!=1 nên 1+1.1!=2=1.2=2!
2!+2.2!=2!.(1+2)=2!.3=3!
.........
tiếp tục ta có
100!+100.100!=101!
bạn giải chi tiết đi
E= 1.1+2.2+3.3+4.4+......+100.100
số số hạng là:
(100.100-1.1):1+1=100(số hạng)
E=(100.100+1.1)*100:2=5060
k mình nhé m.n
E = 1 . 1 + 2 . 2 + 3 . 3 + 4 . 4 + ... + 100 . 100
E = 1 . (2 - 1) + 2 . (3 - 1) + 3 . (4 - 1) + 4 . (5 - 1) + ... + 100 . (101 - 1)
E = (1 . 2 + 2 . 3 + 3 . 4 + 4 . 5 + ... + 100 . 101) - (1 + 2 + 3 + 4 + ... + 100)
E = \(\frac{100\times101\times102}{3}-\frac{100\times101}{2}\)
E = 343400 - 5050
E = 338350
Tham khảo link : https://olm.vn/hoi-dap/detail/100101022310.html
~Study well~
#KSJ
Tính nhanh : B = 1.1+2.2+3.3+.....+100.100
\(B=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+....+100\left(101-1\right)\)
\(=1.2+2.3+3.4+...+100.101-\left(1+2+3+...+100\right)\)
Ta có: \(M=1.2+2.3+...+100.101\)
\(3M=1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+100.101\left(102-99\right)\)
\(=-0.1.2+1.2.3-1.2.3+2.3.4-...-99.100.101+100.101.102\)
\(=100.101.102\)
\(\Rightarrow M=\frac{100.101.102}{3}=343400\)
\(N=1+2+...+100=\frac{\left(100+1\right).100}{2}=5050\)
\(B=M-N=338350\)
1.1!+2.2!+3.3!+...+100.100!
1.1!+2.2!+3.3!+...+100.100! = \(101!-1\)
G=1+1.1!+2.2!+3.3!+...+100.100!
! : Dấu giai thừa. n!=1.2.3....n!
Tính :
1.1 + 2.2 + 3.3 + 4.4 + ... + 100.100
Ta có :
Đặt A=1.1+2.2+3.3+....+100.100
=>A=1.(2-1)+2.(3-1)+3.(4-1)+.....+100.(101-1)
=>A=1.2-1+2.3-2+3.4-3+.....+100.101-100
=>A=1.2+2.3+3.4+...+100.101-(1+2+3+....+100)
Đặt B=1.2+2.3+3.4+...+100.101
=>3B=1.2.3+2.3.3+3.4.3+.....+100.101.3
=>3B=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+100.101.(102-99)
=>3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....+99.100.101+100.101.102-99.100.101
=>3B=100.101.102
=>B=343400
Đặt C=1+2+3+4+5+.....+100=(1+100).100:2=5050
=>A=343400-5050=338350