(1-1/2)×(1-1/3)×(1-1/4)×...×(1-1/18)×(1-1/19)×(1-1/20)
Tính
1/2+1/3+1/4+...1/19+1/20:19/1+18/2+17/3+...+2/18+1/19
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{\dfrac{19}{1}+\dfrac{18}{2}+\dfrac{17}{3}+....+\dfrac{1}{19}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{1+\left(\dfrac{18}{2}+1\right)+\left(\dfrac{17}{3}+1\right)+\left(\dfrac{1}{19}+1\right)}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{1+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{20}{19}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{20.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}\)
\(=\dfrac{1}{20}\)
Tinh:
1/19 + 2/18 + 3/17 +...+ 18/2 + 19/1
1/2 + 1/3 + 1/4 +...+ 1/19 + 1/20
\(\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+...+\frac{18}{2}+\frac{19}{1}\) = \(\left(\frac{1}{19}+1\right)+\left(\frac{2}{18}+1\right)+...+\left(\frac{18}{2}+1\right)+1\)
= \(\frac{20}{19}+\frac{20}{18}+...+\frac{20}{2}+\frac{20}{20}\)
=\(20.\left(\frac{1}{19}+\frac{1}{18}+...+\frac{1}{2}+\frac{1}{20}\right)\)
=\(20.\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}+...+\frac{1}{2}\right)\)
Vì tử số gấp 20 lần mẫu số nên phân số này bằng 20
C=1/1*2*3*4+1/3*4*5+...+1/17*18*19+1/18*19*20
bạn viết vậy khó hiểu quá bạn viết bằng kí tự phân số ik ạ
tinh : (1/19+2/18+3/17+...+18/2+19/1)/1/2+1/3+1/4+...+1/20
So sánh 1/2 + 1/3 + 1/4 + ... + 1/18 + 1/19 + 1/20 và 19/20
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\)
\(\Rightarrow\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}\left(19SH\right)\)
\(\Rightarrow\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+..+\frac{1}{20}>\frac{19}{20}\)
Vậy ................
Đặt \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\) ta có :
\(A>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)
Do có \(20-2+1=19\) phân số \(\frac{1}{20}\) nên :
\(A>19.\frac{1}{20}=\frac{19}{20}\)
Vậy \(A>\frac{19}{20}\)
Chúc bạn học tốt ~
\(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{2}{18}+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{19}+\dfrac{1}{20}}\)
\(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)
Biến đổi tử số
\(19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}\)
= 1 + \(\left(1+\dfrac{18}{2}\right)+\left(1+\dfrac{17}{3}\right)+\left(1+\dfrac{16}{4}\right)+...+\left(1+\dfrac{1}{19}\right)\)
= \(\dfrac{20}{20}+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{1}{19}\)
= 20 x \(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)\)
Vậy \(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)
= \(\dfrac{20\times\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}=20\)
Vậy A = 20
A = 1/1*2 + 1/2*3 + 1/3*4 + ........ 1/18*19 + 1/19*20
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{18\cdot19}+\frac{1}{19\cdot20}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
Sau khi lược bỏ,ta còn lại:
\(A=1-\frac{1}{20}=\frac{19}{20}\)
A = 1/(1*2)+1/(2*3)+1/(3*4)+...+1/(18*19)+1/(19*20)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{18.19}+\frac{1}{19.20}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{20}\)
\(\Rightarrow A=\frac{19}{20}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{18}-\frac{1}{19}\)
\(=1-\frac{1}{19}=\frac{18}{19}\)
1/2×3+1/3×4+1/4×5+....+1/18×19+1/19×20
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{19\cdot20}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)(Dùng cộng rồi trừ chính số đó bằng 0)
=\(\frac{1}{2}-\frac{1}{20}\)
=\(\frac{10}{20}-\frac{1}{20}\)( Dùng phương pháp quy đồng)
=\(\frac{9}{20}\)
Tính :
(1/19+2/18+3/17+...+18/2)/1/2+1/3+1/4+...+1/19+1/20