CMR tồn tại 1 STN chỉ đc viết bởi 2 c/s là 2 và 0 mà số đó chia hết cho 2015
chứng minh rằng tồn tại 1 stn chỉ được viết bởi 2 cs la 2 và 0 mà số đó chia hết cho 2010
Xét 2010 số tự nhiên được viết bởi toàn các chữ số 2
A1=2
A2=22
..................
A2010=222......22 (Gồm 2010 chữ số 2)
Giả sử không có số nào trong dãy số trên chia hết cho 2010 thì số dư của các số trên khi chia cho 2010 lần lượt là
1; 2; 3; .......;2009
Như vậy theo nguyên lý Dirichlet sẽ tồn tại ít nhất 2 số khi chia cho 2010 có cùng số dư, giả sử là
An=222.....22 (có n chữ số 2)
Am=2222...22222 (có m chữ số 2)
Giả sử m>n thì Am-An=2222...000 (có m-n chữ số 2 và n chữ số 0) chia hết cho 2010 (dpcm)
Vì khi tồn tại 2 số mà khi chia cho cùng 1 số có cùng số dư thì hiệu của chúng chia hết cho số đó
CMR: tồn tại một số tự nhiên chỉ viết bởi hai chữ số 0 và 2 mà số đó chia hết cho 2010
đề đúng . Thuộc phần nguyên lí đi rích lê
Chứng minh rằng tồn tại một số tự nhiên chỉ được viết bởi chữ số 2 và chữ số 0 mà
số đó chia hết cho 2015.
vì số cuối là 0 còn bên kia là 5
vì 0 chia hết cho 5 nên 20 chia hết cho 2015
Mình cũng cần giúp, mong các bạn giúp đỡ mik và bạn Đinh Hà!
Chứng minh rằng tồn tại 1 số tự nhiên được viết bởi chữ số 2 và 0 mà số đó chia hết cho 2015
chứng minh rằng tồn tại một số tự nhiên chỉ được viết bởi chữ số 2 và chữ số 0 mà chia hết cho 2015
20 hay sao ay ban a
kb voi mk nha nha nha
tk mk nha nha nha
mk se k va kb lai
Chứng minh rằng tồn tại một số tự nhiên chỉ được viết bởi chữ số 2 và chữ số 0 mà số đó chia hết cho 2015
Có ai biết làm không giúp mình với
Xét 2015 số:
\(a_1=2\)
\(a_2=22\)
...
\(a_{2015}=222...2\)(2015 chữ số 2)
Nếu như có một trong 2015 số này chia hết cho 2015 thì bài toán được cm (do số đó chỉ gồm các chữ số 2
Nếu như không có số nào chia hết cho 2015, thì thì theo nguyên lí Dirichlet ít nhất 2 trong 2015 số này có cùng số dư khi chia 2015 (do chỉ có tối đa 2015 số dư từ 1 đến 2014). Hai số này chia hết cho 2015 do cùng số dư
Giả sử hai số đó là \(a_i\)và \(a_j\)(i<j)
\(\Rightarrow a_j-a_i=222...200...0\)(có i chữ số 0 và j-i chữ số 2) chia hết cho 2015
\(\Rightarrow\)đpcm
CMR: có 1 số gồm toàn CS 1 chia hết cho 19
CMR tồn tại 1 số gồm CS 0 và 1 chia hết cho 2015
CMR: có thể tìm đc 1 STN K sao cho 19K - 1 chi hết cho 10
Chọn dãy
1; 11; 111; ... ;111...1 (số cuối có 20 c/s 1)
Chắc chắn trong dãy có 2 số có cùng số dư khi chia cho 19
2 số đó là
111..1(a c/s 1); 11..1(b c/s 1) [1< a < b < 20]
=>111..1 - 11..1 chia hết cho 19 [b c/s 1 - a c/s 1]
=>111...100...0 chia hết cho 19 [b - a c/s 1 ; a c/s 0]
=>11..1 x 10a chia hết cho 19 [b-a c/s 1]
Mà (19;10)=1 =>(19;10a)=1
=> 111..1 chia hết cho 19 với b-a c/s 1
Câu 3
Giả Sử: k = 4n
=>194n - 1 = (...1) - 1 = (...0) chia hết cho 10
Vậy có thể tìm đc 1 STN k chia hết cho 10
xét dãy : 191,192,...,1911
các số tự nhiên khi chia cho 10 có 10 ước là: 0,1,2,..,9
Mà dãy số trên có 11 số nên tồn tại ít nhất 2 số tn có cùng số dư khi chia cho 10
gọi 2 số đó là: 19m và 19n
(11>m>n>1 m,n=1)
19m-19n chia hết cho 10
19n.(19m-n -1) chia hết cho 10
mà (10,19)=1 (19n,10)=1
19m-n-1 chia hết cho 10
19k-1 chia hết cho 10 (k=m-n)
19k-1 chia hết cho 10q
vậy tồn tại 1 số tn k sao cho 19k-1 chia hết cho 10
Chứng minh rằng tồn tại một số tự nhiên chỉ được viết bởi chữ số 2 và chữ số 0 mà số đó chia hết cho 2010
Giả sử ta có 2010 số tự nhiên được tạo bởi toàn chữ số 2
2; 22; 222; ....; 222...22 (có 2010 chữ số 2)
2010 số tự nhiên trên khi chia cho 2010 sẽ có số dư nằm trong tập 1;2;3; ...; 2009. Theo nguyên lý Dirichlet sẽ có ít nhất 2 số khi chia cho 2010 có cùng 1 số dư, giả sử 2 số đó là A=222...22 (có m chữ số 2) và B=222...22 (có n chữ số 2) giả sử m>n
=> A-B=222..2000..0 (có m-n chữ số 2 và n chữ số 0) chia hết cho 2010 (dpcm)
chứng minh rằng tồn tại một số tự nhiên chỉ được viết bởi chữ số 1 và 0 mà số đó chia hết cho 2024