Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thi Oanh
Xem chi tiết
nguyen tuan minh
Xem chi tiết
Cao Hoài Phúc
Xem chi tiết
nguyen dan nhi
Xem chi tiết
thien ty tfboys
5 tháng 2 2017 lúc 10:17

Ta có : x2-4x+25

=x2-4x+4+21

=(x-2)2+21

Mà : \(\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2+21\ge21\)

Vậy Min là 21

Dấu "=" xảy ra khi : x-2=0 => x=2

Nhớ k cho mình.

Đinh Đức Hùng
5 tháng 2 2017 lúc 10:19

x2 - 4x + 25

= x2 - 4x + 4 + 21

= x2 - 2x - 2x + 4 + 21

= x(x - 1) - 2(x - 2) + 21

= (x - 2)(x - 2) + 21

= (x - 2)2 + 21

Vì (x - 2)2 ≥ 0 với mọi x

=> (x - 2)+ 21 ≥ 21 có gtnn là 21

Dấu "=" xảy ra khi (x - 2)2 = 0 => x = 2

Vậy gtnn của x2 - 4x + 25 là 21 tại x = 2

Chi Đoàn
Xem chi tiết
Nguyễn Thị Thùy Dương
8 tháng 11 2015 lúc 15:58

\(M=\left(x^2+4x+4\right)+1=\left(x+2\right)^2+1\ge0+1=1\)

\(Mmin=1\) khi x+2 = 0 => x = -2

Phạm Tuấn Kiệt
8 tháng 11 2015 lúc 15:59

M=x2 +4x +5

=>M=x(x+4)+5

Ta có:

x(x+4) lớn hơn hoặc bằng 0

=>x(x+4)+5 lớn hơn hoặc bằng 5

=>M lớn hơn hoặc bằng 5

Dấu "=" xảy ra <=> x = 0 hoặc x+4=0 => x= - 4

Vậy M đạt GTNN là 5 <=> x=0 hoặc x= -4

 

THN
Xem chi tiết
Nguyễn Anh Quân
5 tháng 11 2017 lúc 14:55

P + 1 = (x^2+1+4x+3)/x^2+1 = (x^2+4x+4)/x^2+1 = (x+2)^2/x^2+1 >= 0

=> P >= -1

Dấu "=" xảy ra <=> x+2 = 0 <=> x =-2

Vậy Min P = -1 <=> x = -2

Lại có : 4 - P = (4x^2+4-4x-3)/x^2+1 = (4x^2-4x+1)/x^2+1 = (2x-1)^2/x^2+1 >=0

=> P <= 4

Dấu "=" xảy ra <=> 2x-1 = 0 <=> x= 1/2

Vậy Max P = 4 <=> x=1/2

Nguyễn Xuân Toàn
5 tháng 11 2017 lúc 14:54

 Câu trả lời hay nhất:  Biểu diễn P: 

P = x^2 - 4x + 5 

= x^2 - 4x + 4 + 1 

= (x^2 - 4x + 4) + 1 

= (x - 2)^2 + 1 >= 1 

Vậy giá trị nhỏ nhất đạt được của P = 1 khi: 

(x - 2)^2 = 0 

<=> x - 2 = 0 

<=> x = 2

Cao Hoài Phúc
Xem chi tiết
TRUONG MY DUNG
Xem chi tiết
Edogawa Conan
29 tháng 7 2019 lúc 15:08

Ta có:

A = -x2 - 4x - 2 = -(x2 +  4x + 4) + 2 = -(x + 2)2 + 2

Ta luôn có: -(x + 2)2 \(\le\)\(\forall\)x

=> -(x + 2)2 + 2 \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy Max của A = 2 tại x = -2 

(xem lại đề)

prayforme
Xem chi tiết
Đặng Quý
3 tháng 6 2017 lúc 21:22

\(B=x^2-2x+y^2-4x+7=x^2-6x+9+y^2-2=\left(x-3\right)^2+y^2-2\)\(\left(x-3\right)^2\ge0\)\(y^2\ge0\) nên \(B\ge-2\)

đẳng thức xảy ra khi và chỉ khi \(x=3\)\(y=0\)

vậy MIN B = -2 tại x=3 và y=0

Đặng Quý
3 tháng 6 2017 lúc 21:23

mình nghĩ là theo đề thì chỗ kia phải là -4y chứ sao lại -4x nhỉ ???