Tìm x và y biết: lx-1/2012l+lx+yl=0
tìm x biết lx-2012l+lx-2013l=2014
Tìm x;y:
a, lx+1l2 + ly+1l2 + lx-yl + lx-yl2=2
b, lx-8l2 . lx-15l2 < 0
HELP ME!!!!!!!!!!!!!!!!!
Tìm các số nguyên x,y,z,biết:
lx-2l+lx+yl+ly+2z=0
Làm chi tiết hộ mk nha !
|x - 2| + |x + y| + |y +2z| = 0
=> |x - 2| = |x + y| = |y +2z| = 0
=> x= 0 + 2 = 2
=> |2 + y| = 0=> y = -2
=> |-2 + 2z| = 0 => 2z = 2 => z = 1
|x - 2| + |x + y| + |y +2z| = 0
=> |x - 2| = |x + y| = |y +2z| = 0
=> x = 0 + 2 = 2
=> |2 + y| = 0=> y = -2
=> |-2 + 2z| = 0 => 2z = 2 => z = 2/2 => z = 1
giúp mình 2 câu này nhé
tìm x,y biết
2.l2x-1l + l1-yl = 0
lx-3yl +(y+1)^2 =0
|2x - 1| + |1 - y| = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = 1/2
=> 1-y = 0
=> y = 1 - 0 = 0
Vậy x = 1/2 tại y = 0
|x - 3y| + (y+1)2 = 0
=> \(\left(y+1\right)^2=0\rightarrow y+1=0;y=-1\)
Thay vào ta có: |x - 3.(-1) | = 0
=> x - (-3) = 0
=> x =-3
Vây x = -3 tại y = -1
giải phương trình lx-2011l^2011 + lx-2012l^2012 =1
Với x=2011, x=2012 là nghiệm của PT
1. Nếu x < 2011 => x- 2012 < -1 => lx-2012l > 1 => lx-2012l^2012 > 1
=> lx-2011l^2011 + lx-2012l^2012 > 1 => Vô nghiệm
2. Nếu x > 2012 => x- 2011 > 1 => lx-2011l > 1 => lx-2011l^2011 > 1
=> lx-2011l^2011 + lx-2012l^2012 > 1 => Vô nghiệm
3. Nếu 2011 < x < 2012
=> lx-2011l < 1 => lx-2011l^2011 < | x-2011| = x - 2011 (Do mũ của số nhỏ hơn 1 nghịch biến)
=> |x-2012| < 1=> |x-2012|^2012 < |x-2012| = 2012 -x
=> lx-2011l^2011 + lx-2012l^2012 < x - 2011 + 2012 - x =1 => Vô nghiệm
Vậy x=2011, x=2012 là nghiệm duy nhất của PT
tổng x+y biết lx-yl+ly-50l<=0
Vì / x-y/ >/ 0
/ y-50/ >/0
mà / x -y/ + / y -50/ </0
=>x -y = y - 50 = 0
=> x =y = 50
=> x +y =50 +50 =100
Tìm x,y,z:
lx-2l + (y+2x)2 + lz+yl = 0
AI GIÚP MÌNH VỚI
Vì
\(\left|x-2\right|\ge0\)
\(\left(y+2x\right)^2\ge0\)
\(\left|z+y\right|\ge0\)
\(\Rightarrow\left|x-2\right|+\left(y+2x\right)^2+\left|z+y\right|\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-2\right|=0\\\left(y+2x\right)^2=0\\\left|z+x\right|=0\end{cases}}\)
=> x = 2
<=> ( y + 2.2 )2 = 0
=> y + 4 = 0
=> y = - 4
<=> |z + ( - 4 )|= 0
<=> z = 4
Vậy x = 2; y = - 4 ; z = 4
Ta có:\(\left|x-2\right|=0\Rightarrow x=2\)
Tiếp tục tìm y, thế x, ta có: \(\left(y+2.2\right)^2=0\)
\(\Rightarrow\left(y+4\right)^2=0\)
\(\Rightarrow y+4=0\)
\(\Rightarrow y=-4\)
Đã có y, ta tiếp tục tìm z: \(\left|z+-4\right|=0\)\(\Rightarrow z=4\)
Vậy \(x=2;y=-4;z=4\)
cho x,y thuoc Q . chung to rang:
a) lx+yl < hoac = lxl +lyl
b)lx-yl> hoac = lxl - lyl
a)\(\left|x+y\right|\le\left|x\right|+\left|y\right|\left(1\right)\)
Bình phương 2 vế của (1) ta được:
\(\left(\left|x+y\right|\right)^2\le\left(\left|x\right|+\left|y\right|\right)^2\)
\(\Leftrightarrow x^2+2xy+y^2\le x^2+2\left|xy\right|+y^2\)
\(\Leftrightarrow xy\le\left|xy\right|\) (Đpcm)
Dấu = khi \(xy\ge0\)
b)\(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
\(\Rightarrow\left|x-y\right|+\left|y\right|\ge\left|x\right|\)
Áp dụng câu a ta có:
\(\Rightarrow\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\) (luôn đúng)
Suy ra đpcm
Bài1: Tìm x,y biết
a) |1/2-1/3+x| = -1/4 - |y|
b)|x-y|+ |y+9/25l = 0
Bài 2 : Tìm x , biết
a) lx-5/3l<1/3
b)2/5< lx-7/5|<3/5
c) lx+11/2|> l-5/5|
giúp mik với
Bài 2 :
a, \(\left|x-\frac{5}{3}\right|< \frac{1}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{3}< \frac{1}{3}\\x-\frac{5}{3}< -\frac{1}{3}\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 2\\x< \frac{4}{3}\end{cases}}}\)
b, \(\frac{2}{5}< \left|x-\frac{7}{5}\right|< \frac{3}{5}\)
\(\orbr{\begin{cases}\frac{2}{5}< x-\frac{7}{5}< \frac{3}{5}\\\frac{2}{5}< -x+\frac{7}{5}< \frac{3}{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{9}{5}< x< 2\\1>x>\frac{4}{5}\end{cases}}\)