5/1.3 + 5/3.5 +...+ 5/99.10
1.3+2.4+3.5+....+99.10=?
trả lời nhanh cho mình nha
Tinh tổng:
a) 2/1.3+2/3.5+2/5.7+.........2/99.101
b) 5/1.3+5/3.5+5/5.7+....................5/99.101
a)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
b) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}=\frac{2}{1.3}.\frac{5}{2}+\frac{2}{3.5}.\frac{5}{2}+\frac{2}{5.7}.\frac{5}{2}+...+\frac{2}{99.101}.\frac{5}{2}\)
\(=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)
tính tổng :
a.2/1.3+2/3.5+2/5.7+....+2/99.101
b.5/1.3+5/3.5+5/5.7+....+5/99.101
a.2/1.3+2/3.5+2/5.7+................+2/99.101
1-1/3+1/3-1/5+1/5-1/7+....+1/99-1/101
1-1/101
100/101
b.5/1.3+5/3.5+5/5.7+............+5/99.101
5.2/1.3.2+5.2/3.5.2+5.2/5.7.2+........+5.2+99.101.2
5/2(2/1.3+2/3.5+2/5.7+........+2/99.101)
5/2(1-1/3+1/3-1/5+1/5-1/7+........+1/99-1/101)
5/2(1-1/101)
5/2.100/101
250/101
Tính Tổng
a) 2/1.3+2/3.5+2/5.7.... 2/99.101
b) 5/1.3+5/3.5+5/5.7+...+5/99.101
c) 4/2.4+4/4.6+4/6.8+...+4/2008.2010
a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=100/101
b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5
=(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5
=(1-1/101).2,5
=100/101.2,5
=250/101
c) =(2/2.4+2/4.6+2/6.8+...+2/2008-2/2010).2
=(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010).2
=(1/2-1/2010).2
=1004/1005
5/1.3+5/3.5+5/5.7+...+5/91.93+5/93.95
Đặt A= 5/1.3 + 5/3.5 + 5/5.7 + ... + 5/91.93 + 5/93.95
=> 2/5 A = 2/5 . (5/1.3 + 5/3.5 + 5/5.7 + ... + 5/91.93 + 5/93.95)
<=> 2/5A = 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/91.93 + 2/93.95
<=> 2/5A = 1-1/3 +1/3-1/5+1/5-1/7+...+1/91-1/93+1/93-1/95
<=> 2/5A = 1-1/95
<=> 2/5A = 94/95
=> A = 94/95 : 2/5
<=> A = 47/19
A=5/1.3+5/3.5+5/5.7+...+5/99.101
A=5/1.3+5/3.5+5/5.7+...+5/99.101
A=5.1/2 [1/1-1/3+1/3-1/5+1/5-1/7+1/7+...+1/99-1/101 ]
A=5.1/2.100/101
A=250/101
k nha
thế bn tạo câu hỏi này ra làm j?
k bn thì ......!
ko hiểu nổi<☻>
\(A=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.100}\)
\(A=5:2\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=2,5\left(1-\frac{1}{100}\right)\)
\(A=2,5.\frac{99}{100}=\frac{99}{40}\)
5/1.3 + 5/3.5 + ... + 5/99.101 = ?
\(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
\(=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)=\frac{5}{2}.\left(1-\frac{1}{101}\right)=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)
=\(\frac{5.2}{1.3.2}+\frac{5.2}{3.5.2}+...+\frac{5.2}{99.101.2}\)
=\(\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
=\(\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
=\(\frac{5}{2}.\left(1-\frac{1}{101}\right)\)
=\(\frac{5}{2}.\frac{100}{101}\)
=\(\frac{250}{101}\)
\(\dfrac{5}{1.3}\)+\(\dfrac{5}{3.5}\)+\(\dfrac{5}{5.7}\)+...+\(\dfrac{5}{201.203}\)
\(\dfrac{5}{1\cdot3}+\dfrac{5}{3\cdot5}+\dfrac{5}{5\cdot7}+...+\dfrac{5}{201\cdot203}\)
= \(\dfrac{5}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{201\cdot203}\right)\)
= \(\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{201}-\dfrac{1}{203}\right)\)
= \(\dfrac{5}{2}\left(1-\dfrac{1}{203}\right)\)
= \(\dfrac{5}{2}\cdot\dfrac{202}{203}=\dfrac{505}{203}\)
Ta có :
\(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{5.7}+...+\dfrac{5}{201.203}\)
\(=\dfrac{5}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{201.203}\right)\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-...+\dfrac{1}{201}-\dfrac{1}{203}\right)\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{203}\right)\)
\(=\dfrac{5}{2}.\dfrac{202}{203}\)
\(=\dfrac{505}{203}\)
Bài 1: Tính tổng
a, 2\1.3+2\3.5+2\5.7+.......+2\99.101
b, 5\1.3+5\3.5+5\5.7+......+5\99.101
Bài 2: CMR phân số 2n+1\3n+2 là phân số tối giản
Bài 1:
Ta có:
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
\(=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
b, Đặt \(A=\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)
\(\Rightarrow\frac{2}{5}A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
Từ (a) \(\Rightarrow\frac{2}{5}A=\frac{100}{101}\)
\(\Rightarrow A=\frac{100}{101}:\frac{2}{5}=\frac{100}{101}.\text{5/2}=\frac{250}{101}\)
Bài 2:
Đặt \(\left(2n+1;3n+2\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\)
\(\Rightarrow\left(2n+1;3n+2\right)=1\)
\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản
1. Giải
a, \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=2.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)
\(=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
b, \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(=5.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{5.100}{2.101}=\frac{500}{202}=\frac{250}{101}\)
2. Giải
Gọi ước chung lớn nhất của 2n + 1 và 3n + 2 là d (d thuộc N*)
=> 2n + 1 \(⋮\)d ; 3n + 2 \(⋮\)d
=> 3(2n + 1) \(⋮\)d ; 2(3n + 2) \(⋮\)d
=> 6n + 3 \(⋮\)d , 6n + 4 \(⋮\)d
=> (6n + 4) - (6n + 3) \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
Vậy \(\frac{2n+1}{3n+2}\)là phân số tối giản