Với a,n thuộc N* thì chứng minh:
A) n/a(a+n)=1/a-1/a+n
B) 2n/a(a+n)(a+2n)=1/a(a+n)-1/(a+n)(a+2n)
C) Áp dụng, tính:
C=2014/1.3.5+2014/3.5.7+...+2014/49.51.53
Với a,n thuộc N* thì chứng minh:
A) n/a(a+n)=1/a-1/a+n
B) 2n/a(a+n)(a+2n)=1/a(a+n)-1/(a+n)(a+2n)
C) Áp dụng, tính:
C=2014/1.3.5+2014/3.5.7+...+2014/49.51.53
A) Bạn quy đồng vế phải ta được vế trái.
B)Bạn tiếp tục quy đồng vế phải ra vế trái.
C)Ta có:
\(\frac{1007}{2}\times\left(\frac{4}{1\times3\times5}+\frac{4}{3\times5\times7}...+\frac{4}{49\times51\times53}\right)\)
\(\frac{1007}{2}\times\left(\frac{1}{1\times3}-\frac{1}{3\times5}+\frac{1}{3\times5}-\frac{1}{5\times7}+...+\frac{1}{49\times51}-\frac{1}{51\times53}\right)\)
\(\frac{1007}{2}\times\left(\frac{1}{3}-\frac{1}{2703}\right)=\frac{2850}{17}\)
Áp dụng chứng minh rằng nếu: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) thì:
\(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}\)với n thuộc N
Ta có \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\) \(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\) \(c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\) a = -b hoặc b = -c hoặc c = -a
1) Nếu a = -b thì \(a^{2n+1}+b^{2n+1}=-b^{2n+1}+b^{2n+1}=0\)và \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}=\frac{1}{-b^{2n+1}}+\frac{1}{b^{2n+1}}=0\)
\(\Rightarrow\) \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{c^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}\)
Tương tự cho 2 trường hợp còn lại suy ra đpcm.
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a+b=0\\b+c=0\\c+a=0\end{cases}}\)
Với \(a+b=0\)thì
\(\hept{\begin{cases}\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{c^{2n+1}}\\\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}=\frac{1}{c^{2n+1}}\end{cases}}\)
\(\Rightarrow\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}\)
Tương tự cho 2 trường hợp còn lại ta có điều phải chứng minh.
CMR:
a, 1.3.5...39/21.22.23...40=1/2mũ20
b, 1.3.5...(2n-1)/(n+1)(n+2)(n+3)...2n = 1/2mũn với n thuộc N*
tham khảo ở đây : Câu hỏi của Vũ Thị Thanh Thảo - Toán lớp 6 - Học toán với OnlineMath
a) Chứng minh rằng:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
b) Áp dụng chứng minh rằng nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) thì \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}\) với mọi n thuộc N
a)(a+b+c)(ab+bc+ac)-abc=a(ab+bc+ac)+b(ab+bc+ac)+c(ab+bc+ac)-abc
=a2b+abc+a2c+ab2+b2c+abc+abc+bc2+ac2-abc
=(abc+a2b)+(a2c+ac2)+(b2c+ab2)+(bc2+abc)+(abc-abc)
=ab(c+a)+ac(c+a)+b2(c+a)+bc(c+a)
=(ab+ac+b2+bc)(c+a)
=(a+b)(b+c)(c+a)
a) \(\left(a+b+c\right)\left(ab+bc+ac\right)-abc=a^2b+abc+a^2c+ab^2+b^2c+abc+abc+c^2b+c^2a-abc\)
\(=a^2b+ab^2+b^2c+bc^2+c^2a+a^2c+2abc=b\left(a^2+2ac+c^2\right)+b^2\left(a+c\right)+ac\left(a+c\right)\)
\(=b\left(a+c\right)^2+b^2\left(a+c\right)+ac\left(a+c\right)=\left(a+c\right)\left(ab+bc+b^2+ac\right)\)
\(=\left(a+c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]=\left(a+c\right)\left(a+b\right)\left(b+c\right)\)
b) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)(áp dụng từ câu a) )
\(\Rightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\)
Đặt \(a^{2n+1}=x;b^{2n+1}=y;c^{2n+1}=z\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)( áp dụng câu a) )
\(\Rightarrow x+y=0\)hoặc \(y+z=0\)hoặc \(z+x=0\)
Với \(x+y=0\Leftrightarrow a^{2n+1}+b^{2n+1}=0\Leftrightarrow\left(a+b\right).A=0\)với A là một đa thứcMà ta lại có \(a+b=0\left(cmt\right)\)\(\Rightarrow\)\(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}=0\)\(\Rightarrow\frac{1}{c^{2n+1}}=\frac{1}{c^{2n+1}}\)(luôn đúng)
Tương tự với các trường hợp còn lại, ta có điều phải chứng minh.
\(\)
Bài 1: Tìm n thuộc N để:
A= n^2+9 là số chính phương
B= n^2+2014 là số chính phương
C= n(n+3) là số chính phương
Bài 2: CMR: a^2-1 chia hết cho 24 với a là số nguyên tố >3
Bài 3: CMR: n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc N
a, Vì n \(\in\)N => n2 là số chính phương
mà 9 = 32 là số chính phương
=> n2 + 9 là số chính phương.
Vậy A = n2 + 9 là số chính phương.
CHÚC BẠN HỌC TỐT!!!!
Vì A=n2+9 là SCP
Đặt A=n2+9=m2 (m thuộc N)
<=> 9=m2-n2
<=> 9=(m-n)(m+n)
Vì n thuộc N => m-n thuộc Z, m+n thuộc N
=> m-n,m+n thuộc Ư(9)
mà m+n>m-n
nên \(\left\{{}\begin{matrix}m+n=9\\m-n=1\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}m=5\\n=4\end{matrix}\right.\)(thỏa mãn)
Vậy A là SCP <=>n=4
S=1+2014+2014^2+2014^3+....+21014^2013
a,chứng tỏ Schia hết cho 2015
b,tìm n là số tự nhiên để 2013S+1= 2014^2n+2
Câu 1:
a, Giả sử n là số tự nhiên thỏa mãn điều kiện n(n+1) +6 không chia hết cho 3. Chứng minh rằng 2n^2+n+8 không là số chính phương
b, cho 4 số dương a;b;c;d thỏa mãn điều kiện a^4/b + c^4/d = 1/(b+d) và a^2 + c^2 =1 . Chứng minh rằng (a^2014)/(b^1007) + ( c^ 2014)/(d^1007) = 2/( b+d)^1007
.Mọi người giải giúp Linh nha ^^ Linh đang cần gấp ạ!
1) Cho a+b+c =0 . Chứng minh rằng M=N=P
M=a(a+b)(a+c) N=b(b+c)(b+a) P=c(c+a)(c+b)
2) Cho M= (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)+x2 . Biết x=1/2a +1/2b+1/2c. Tính M theo a,b,c
3) Cho dãy số 1,3,6,10,15,...,n(n+1)/2 ,...Chứng minh rằng tổng 2 số liên tiếp của dãy bao giờ cũng là số chính phương
4) a Chứng minh rằng với mọi a,b,c luôn có (a+b+c)(ab+bc+ca)- abc =(a+b)(b+c)(c+a)
b áp dụng chứng minh rằng nếu 1/a+1/b+1/c = 1/a+b+c thì 1/a2n+1+1/b2n+1+1/c2n+1= 1/a2n+1+b2n+1+c2n+1 với mọi n thuộc N
Ta biểu thị 2 số hạng liên tiếp của dãy có dạng:\(\frac{\left(n-1\right)n}{2};\frac{n\left(n+1\right)}{2}\)
\(\frac{\left(n-1\right)n}{2}+\frac{n\left(n+1\right)}{2}\)
\(=\frac{\left(n-1\right)n+n\left(n+1\right)}{2}\)
\(=\frac{n\left(n-1+n+1\right)}{2}\)
\(=\frac{n\times2n}{2}\)
\(=n^2\)
\(\Rightarrow\)Tổng hai số hạng liên tiếp của dãy bao giờ cũng là số chính phương