\(A=\frac{4n+1}{2n+3}\)
Tìm n thuộc Z để:
a, A là số nguyên
b, A lớn nhất
c, A nhỏ nhất
Cho A = \(\frac{4n+1}{2n+3}\). Tìm n thuộc Z để:
a) A là phân số.
b) A có giá trị là một số nguyên.
c) A có giá giá trị lớn nhất. A có giá trị nhỏ nhất
A=\(\frac{4n+1}{2n+3}\left(n\in Z\right)\)
a)Tìm n để A nguyên
b)Tìm n đẻ A có giá trị lớn nhất , nhỏ nhất
\(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=2-\frac{5}{2n+3}\) A nguyên nên 2n+3\(\in\)U(5)={5,-5,1,-1} nên n\(\in\){2, -4, -1, -2}
A=\(2-\frac{5}{2n+3}\) nên có giá trị lớn nhất khi 2n+3=-1 <=>A=7, nhỏ nhất khi 2n+3=1 <=>A=-3
ban hoc lop may vay
Cho A = 4n+1 / 2n+3 (n là số nguyên).
a) Tìm n để A nguyên
b) Tìm n để A có giá trị lớn nhất, nhỏ nhất
\(\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)
Để \(2-\frac{5}{2n+3}\) là số nguyên <=> \(\frac{5}{2n+3}\) là số nguyên
=> 2n + 3 thuộc Ư(5) = { - 5; - 1; 1; 5 }
=> 2n + 3 = { - 5; - 1; 1; 5 }
=> n = { - 4; - 2; - 1 ; 1 }
a) Ta có:
\(\frac{4n+1}{2n+3}\inℤ\)
\(\Rightarrow\frac{4n-2+3}{2n+3}\inℤ\)
\(\Rightarrow\frac{2n+2n+3-2}{2n+3}\inℤ\)
\(\Rightarrow\frac{2n+3}{2n+3}+\frac{2n-2}{2n+3}\inℤ\)
\(\Rightarrow1+\frac{2n-2}{2n+3}\inℤ\Leftrightarrow\frac{2n-2}{2n+3}\inℤ\)
\(\Rightarrow\frac{2n+3-5}{2n+3}\inℤ\)
\(\Rightarrow1+\frac{-5}{2n+3}\inℤ\Leftrightarrow\frac{-5}{2n+3}\inℤ\)
\(\Rightarrow\left(2n+3\right)\in B\left(-5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow\left(2n+3\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow2n=\left\{-2;-4;2;-8\right\}\)
\(\Rightarrow n=\left\{-1;-2;1;-4\right\}\)
Cho A =\(\frac{4n+1}{2n+3}\)(n\(\in\)Z)
a. Tìm n để A là số nguyên
b.Tìm n để A lớn nhất
c. Tìm n để A bé nhất
Để A là số nguyên thì 4n + 1 chia hết cho 2n + 3
<=> 4n + 1 chai hết cho 4n + 6
=> 4n + 6 - 5 chia hết 4n + 6
=>5 chia hết 4n + 6
=> 4n + 6 thuôc Ư(5) = {-1;1;-5;5}
Ta có bảng
4n + 6 | -5 | -1 | 1 | 5 |
4n | -11 | -7 | -5 | 11 |
n | -1 |
Cho phân số : A = \(\frac{2n+1}{n-2}\)
a) Tìm n thuộc Z để A có giá trị nguyên .
b) Tìm n thuộc Z để A có giá trị lớn nhất .
c) Tìm n thuộc Z để A có giá trị nhỏ nhất .
d) Tìm n thuộc Z để A có giá trị âm .
\(Cho\)\(A=\frac{4n+1}{2n+3}\left(n\in Z\right)\)
\(a.\)Tìm n để A có giá trị là 1 số nguyên.
b. Tìm n để A đạt giá trị lớn nhất , nhỏ nhất.
Mn giúp mk nha.
\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)
a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3
<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
<=>\(2n\in\left\{-8;-4;-2;2\right\}\)
<=>\(n\in\left\{-4;-2;-1;1\right\}\)
b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\) nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên
<=> 2n+3=-1 <=> n=-2
\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2
phần giá trị nhỏ nhất bạn làm nốt
cho \(A=\frac{4n+1}{2n+1}\left(n\in z\right)\)
a,Tìm số nguyên n để \(A\)có giá trị là số nguyên ?
b,Tìm n để \(A\)đạt giá trị lớn nhất ? giá trị nhỏ nhất ?
Cho phân số B = \(\frac{4n+1}{2n-3}\), n thuộc Z
a, Tìm n để B là p/s tối giản
b, Tìm n để B đạt giá trị nhỏ nhất, giá trị lớn nhất và tính các giá trị đó
a, \(\frac{4n+1}{2n-3}=\frac{2n-3+2n+4}{2x-3}\)
= \(\frac{2n-3}{2n-3}+\frac{2n+4}{2n-3}\) = \(1+\frac{2n-3+7}{2n-3}=1+\frac{7}{2n-3}\)
để B tối giản thì 7 phải chia hết cho 2n - 3
=> 2n - 3 thuộc Ư(7)
=> 2n - 3 = { 1 , -1 , 7 , -7 }
=> 2n = { 4 , 2 , 10 , -4 }
=> n ={ 2 , 1 ,5 ,-2 }
Đừng bỏ cuộc
b, để \(\frac{4n+1}{2n-3}\) lớn nhất
=> 2n - 3 phải nhỏ nhất
mà 2n - 3 phải >0 và khác 0 ( là mẫu số )
=> 2n -3 = 1
=> 2n = 4
n = 2
(ᴾᴿᴼシPickaミ★ácミ ★Quỷ★彡)
Ừ câu a)
Để B tối giản thì 7 phải không chia hết cho 2n - 3
=> n khác {2; -2; 5; 1}