Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Sơn Nguyễn
Xem chi tiết
Hà Minh Nhật
Xem chi tiết
Tears
Xem chi tiết
Nguyễn Thị Bảo Ngọc
2 tháng 12 2015 lúc 22:01

áp dụng tính chất : lx| = |-x|

|x|+|y|\(\ge\)|x+y|

ta được lx-1l+ lx-2l +lx-3l+ lx-4l \(\ge\)|x-1+2-x+x-3-x+4|=4

vậy giá trị nhỏ nhất là 4

dấu = xảy ra khi tất cả cùng dấu

cậu nên mua quyển sách mình nói nêu là dân chuyên toán

Tears
2 tháng 12 2015 lúc 21:57

Thanh Nguyễn Vinh chi tiết giùm

Vũ Khánh Linh
Xem chi tiết
Nguyễn Quốc Khánh
3 tháng 12 2015 lúc 21:58

Ta có

T=/x-1/+/x-2/+/x-3/+/x-4/

=/x-1/+/2-x/+/x-3/+/4-x/

Áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/

=>T \(\ge\)/x-1+2-x+x-3+4-x/=/2/=2

nhớ tick mình nha

 

Toàn Quyền Nguyễn
Xem chi tiết
Lightning Farron
20 tháng 3 2017 lúc 23:09

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) cho \(VT\) ta có:

\(VT=\left|x+3\right|+\left|x-1\right|=\left|x+3\right|+\left|1-x\right|\)

\(\ge\left|x+3+1-x\right|=4\left(1\right)\)

Áp dụng tiếp BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) cho mẫu của \(VP\) ta có:

\(\left|y-2\right|+\left|y+2\right|=\left|2-y\right|+\left|y+2\right|\)

\(\ge\left|2-y+y+2\right|=4\)\(\Rightarrow\dfrac{1}{\left|y-2\right|+\left|y+2\right|}\le\dfrac{1}{4}\)

\(\Rightarrow VP=\dfrac{16}{\left|y-2\right|+\left|y+2\right|}\le\dfrac{16}{4}=4\left(2\right)\)

Từ \((1);(2)\) ta có: \(VT\ge4\ge VP\)

Đẳng thức xảy ra khi và chỉ khi \(VT=VP=4\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x+3\right|+\left|x-1\right|=4\\\dfrac{16}{\left|y-2\right|+\left|y+2\right|}=4\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\pm1\\x=-3\\x=-2\\x=0\end{matrix}\right.\\\left[{}\begin{matrix}y=\pm2\\y=\pm1\\y=0\end{matrix}\right.\end{matrix}\right.\)

nguyễn thị khánh ly
Xem chi tiết
Mr Lazy
8 tháng 7 2015 lúc 13:10

Chia từng khoảng x ra để bỏ tất cả trị tuyệt đối rồi làm; có vẻ là rất dài.

phạm quỳnh trang
31 tháng 3 2021 lúc 21:22

e hok lớp 6

mà bài này dễ có điều dài

Khách vãng lai đã xóa
Lê Phạm Minh Gíac
Xem chi tiết
Vũ Bách Quang
25 tháng 8 2019 lúc 18:14

\(\Leftrightarrow\orbr{\begin{cases}x+1+x+2+x+3+x+4=20\\x+1+x+2+x+3+x+4=-20\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+x+x+x\right)+1+2+3+4=20\\\left(x+x+x+x\right)+1+2+3+4=-20\text{​​}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+10=20\\x+10=-20\end{cases}}\Rightarrow\orbr{\begin{cases}x=20-10\\x=-20-10\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=10\\x=-30\end{cases}}\)

Huỳnh Quang Sang
25 tháng 8 2019 lúc 20:33

\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|=20\)

\(\Leftrightarrow\orbr{\begin{cases}x+1+x+2+x+3+x+4=20\\x+1+x+2+x+3+x+4=-20\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left[x+x+x+x\right]+\left[1+2+3+4\right]=20\\\left[x+x+x+x\right]+\left[1+2+3+4\right]=-20\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}4x+10=20\\4x+10=-20\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}4x=10\\4x=-30\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=5\\2x=-15\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{15}{2}\end{cases}}\)

Vũ Bách Quang sai từ dòng thứ ba đến cuối . Xem kĩ lại nhé

Trịnh
Xem chi tiết
Phan Thanh Sơn
Xem chi tiết
Trần Hùng Minh
30 tháng 6 2016 lúc 16:05

1.a) |x - 3/2| + |2,5 - x| = 0

=> |x - 3/2| = 0 và |2,5 - x| = 0

=> x = 3/2 và x = 2,5 (Vô lý vì x không thể xảy ra 2 trường hợp trong cùng 1 biểu thức).

Vậy x rỗng.