1+ 1/2(1+2) +1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+4+5+...+20)
tính:
1+1/2.(1+2)+1/3.(1+2+3)+1/4.(1+2+3+4)+...+1/20.(1+2+3+4+5+...+20)
Tổng S = -1/2 - 1/3 - 1/4 - .........-1/20 +3/2 +4/3 +5/4 +.....+21/20
\(-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{20}+\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+...+\frac{21}{20}\)
S=-1/2-1/3-1/4-...-1/20+3/2+4/3+5/4+...+21/20
=>S=(3/2-1/2)+(4/3-1/3)+(5/4-1/4)+...+(21/20-1/20)
=>S=1+1+1...+1
Ta thấy S có 20 số hạng
=>S=20
B = 1 + 5 + 52 + 53 + ....... + 52008 + 52009
S = 1 + 2 + 5 + 14 + ....... + 3n-1 + 1/2 (với n thuộc Z)
A = 1 + 3/2^3 + 4/2^4 + 5/2^5 + ...... + 100/2^100
Q = 1 + 1/2*(1+2) + 1/3*(1+2+3) + 1/4*(1+2+3+4) + ...... + 1/20*(1+2+3+.....+20)
M = -4/1*5 - 4/5*9 - 4/9*13 - ....... - 4/(n+4)*n
Giúp mk với! Mk đang cần gấp lắm !!!!!
\(B=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)
\(\Rightarrow 5B=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)
Trừ theo vế:
\(5B-B=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+...+5^{2009})\)
\(4B=5^{2010}-1\)
\(B=\frac{5^{2010}-1}{4}\)
\(S=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+..+\frac{3^{n-1}+1}{2}\)
\(=\frac{3^0+3^1+3^2+...+3^{n-1}}{2}+\frac{\underbrace{1+1+...+1}_{n}}{2}\)
\(=\frac{3^0+3^1+3^2+..+3^{n-1}}{2}+\frac{n}{2}\)
Đặt \(X=3^0+3^1+3^2+..+3^{n-1}\)
\(\Rightarrow 3X=3^1+3^2+3^3+...+3^{n}\)
Trừ theo vế:
\(3X-X=3^n-3^0=3^n-1\)
\(\Rightarrow X=\frac{3^n-1}{2}\). Do đó \(S=\frac{3^n-1}{4}+\frac{n}{2}\)
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
\(\Rightarrow 2A=2+\frac{3}{2^2}+\frac{4}{2^3}+\frac{5}{2^4}+...+\frac{100}{2^{99}}\)
Trừ theo vế:
\(2A-A=1+\frac{3}{2^2}+\frac{4-3}{2^3}+\frac{5-4}{2^4}+\frac{6-5}{2^5}+...+\frac{100-99}{2^{99}}-\frac{100}{2^{100}}\)
\(\Leftrightarrow A=1+\frac{3}{4}-\frac{100}{2^{100}}+(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}})\)
Đặt \(T=(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}})\)
\(\Rightarrow 2T=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}\)
Trừ theo vế: \(2T-T=\frac{1}{2^2}-\frac{1}{2^{99}}\)
\(\Leftrightarrow T=\frac{1}{4}-\frac{1}{2^{99}}\)
Do đó: \(A=1+\frac{3}{4}-\frac{100}{2^{100}}+\frac{1}{4}-\frac{1}{2^{99}}=2-\frac{102}{2^{100}}\)
1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+4+...+20)
a) N = 1/2 + 1/6+ 1/12 + 1/20 + 1/30 +1/42 + 1/56 + 1/72 +1/90
b) 5/8 + 2/9 -2/5 + 3/8 + 4/9 + 1/3 - 3/5 =
c) 4 1/5 + 5 1/3 - 2 2/3 x 3 1/5 + 9/25 : 9/20 =
TÍNH: B= 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+4+...+20)
1) 2³ .x -5² x = 2( 5² + 2² ) -33. 2) 15÷ ( x +2) = (3³ +3) ÷1
3) 20÷ (x +1) = (5² +1 ) ÷13. 4) 320÷ ( x -1 ) = (5³ - 5² ) ÷4 +15
5) 240 ÷ ( x -5 ) = 2² .5² -20. 6) 70 ÷ ( x -3) = ( 3⁴ -1) ÷ 4 - 10
Giúp mình với mình Tối nay mình đi học rồi
1) \(2^3\times x-5^2\times x=2\times\left(5^2+2^2\right)-33\)
\(x\times\left(2^3-5^2\right)=2\times\left(25+4\right)-33\)
\(x\times\left(8-25\right)=2\times29-33\)
\(x\times-17=25\)
\(x=-\dfrac{25}{17}\)
2) \(15\div\left(x+2\right)=\left(3^3+3\right)\div1\)
\(15\div\left(x+2\right)=\left(27+3\right)\div1\)
\(15\div\left(x+2\right)=30\div1\)
\(15\div\left(x+2\right)=30\)
\(x+2=\dfrac{1}{2}\)
\(x=-\dfrac{3}{2}\)
3) \(20\div\left(x+1\right)=\left(5^2+1\right)\div13\)
\(20\div\left(x+1\right)=\left(25+1\right)\div13\)
\(20\div\left(x+1\right)=26\div13\)
\(20\div\left(x+1\right)=2\)
\(x+1=20\div2\)
\(x+1=10\)
\(x=9\)
4) \(320\div\left(x-1\right)=\left(5^3-5^2\right)\div4+15\)
\(320\div\left(x-1\right)=\left(125-25\right)\div4+15\)
\(320\div\left(x-1\right)=100\div4+15\)
\(320\div\left(x-1\right)=25+15\)
\(320\div\left(x-1\right)=40\)
\(x-1=8\)
\(x=9\)
5) \(240\div\left(x-5\right)=2^2\times5^2-20\)
\(240\div\left(x-5\right)=4\times25-20\)
\(240\div\left(x-5\right)=100-20\)
\(240\div\left(x-5\right)=80\)
\(x-5=30\)
\(x=35\)
6) \(70\div\left(x-3\right)=\left(3^4-1\right)\div4-10\)
\(70\div\left(x-3\right)=\left(81-1\right)\div4-10\)
\(70\div\left(x-3\right)=80\div4-10\)
\(70\div\left(x-3\right)=20-10\)
\(70\div\left(x-3\right)=10\)
\(x-3=7\)
\(x=10\)
tính tống S= -1/2-1/3-1/4-...-1/20+3/2+4/3+5/4+...+21/20.vậy tổng S=?
giúp mình bài này nữa nha:
A= -1/2 - 1/3 - 1/4 - 1/5 - ... - 1/20 + 3/2 + 4/3 + 5/4 + 6/5 + ... + 21/20
\(\frac{-1}{2}-\frac{1}{3}-\frac{1}{4}-.........-\frac{1}{20}+\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+...........+\frac{21}{20}\)
=\(\left(\frac{-1}{2}+\frac{3}{2}\right)+\left(\frac{-1}{3}+\frac{4}{3}\right)+\left(\frac{-1}{4}+\frac{5}{4}\right)+..................+\left(\frac{-1}{20}+\frac{21}{20}\right)\)
=\(1+1+1+.........+1\)(19 số 1)
=19