Chứng minh:
\(\frac{n}{n+1}\)là Phân số tối giản\(\left(n\in N;n\ne0\right)\)
Chứng minh rằng phân số \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản với \(n\in N\)
Ta có: \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}=\frac{5n+2}{6n^2+5n+1}\)
Giả sử d là ước chung lớn nhất của \(\left(5n+2\right);\left(6n^2+5n+1\right)\)
\(\Rightarrow\hept{\begin{cases}6.\left(5n+2\right)^2⋮d\\25.\left(6n^2+5n+1\right)⋮d\end{cases}}\)
\(\Rightarrow25\left(6n^2+5n+1\right)-6\left(5n+2\right)^2⋮d\)
\(\Rightarrow5n+1⋮d\)
\(\Rightarrow\left(5n+2\right)-\left(5n+1\right)=1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
BÀI TẬP: Chứng minh phân số\(\frac{n}{n+1}\)tối giản \(\left(n\in N;n\ne0\right)\)
Gọi d là ƯCLN của (n;n+1)
\(\Rightarrow\)n chia hết cho d; (n+1) chia hết cho d
\(\Rightarrow\)(n+1) - n chia hết cho d
\(\Rightarrow\)1 chia hết cho d
\(\Rightarrow d\in\){1;-1}
Vậy \(\frac{n}{n+1}\)là phân số tối giản
gọi d là ƯCLN{n;n+1}
ta có: n chia hết ; n+1 chia hết cho d (1)
=> n+1-n chia hết cho d
=> 1 chia hết cho d (2)
từ (1) và(2)=> d= +1 và -1
vậy \(\frac{n}{n+1}\)là phân số tối giản
Gọi d là ƯCLN(n;n+1)
=>n chia hết cho d;(n+1) chia hết cho d
=>(n+1)-n chia hết cho d
=>1 chia hết cho d
=>d thuộc {1;-1}
Vậy \(\frac{n}{n+1}\)là phân số tối giản
cho phân số : \(A=\frac{12n+1}{30n+1}\left(n\in N\right)\)
a, Tính A biết n = 3 , n = 5
b, Chứng minh A là phân số tối giản
a, Bạn tự tính được. Tự làm nha.
b, Gọi ƯCLN(12n+1; 30n+1) là d. Ta có:
12n+1 chia hết cho d => 60n+5 chia hết cho d
30n+1 chia hết cho d => 60n+2 chia hết cho d
=> 60n+5-(60n+2) chia hết cho d
=> 3 chia hết cho d
=> d thuộc ước của 3
Vì 12 chia hết cho 3=> 12n chia hết cho d=> 12n+1 chia 3 dư 1=> 12n+1 không chia hết cho 3
=> d khác 3
=> d=1
=> ƯCLN(12n+1; 30n+1) = 1
=>\(\frac{12n+1}{30n+1}\)là phân số tối giản (đpcm)
1, Cho phân số \(A=\frac{12n+1}{30n+1}\left(n\in N\right)\)
a,Tính A biết n=2 , n = 5
b, Chứng minh răng A là phân số tối giản
th1 n=2\(A=\frac{12.2+1}{30.2+1}=\frac{25}{61}\)
th2 n=5 \(A=\frac{12.5+1}{30.5+1}=\frac{61}{151}\)
Gọi ƯCLN(12n+1,30n+1) là d đk d thuộc N*
ta có vì 12n+1 chia hết cho d suy ra 60n+5 chia hết cho d
30n+1 chia hết cho d suy ra 60n+2 chia hết cho d
suy ra 60n+5-(60n+2) chia hết cho d
3 chia hết cho d
d thuộc ước của 3
Ư(3)={1;3}
ta có vì 60n+5 ko thể chia hết cho 3
60n+2 ko chia hết cho 3
suy ra d=1
Vì ƯCLN(12n+1,30n+1)=1 suy ra đây là hai số nguyên tố cùng nhau và A là tối giản
chứng minh rằng
\(\frac{12n+1}{30n+2}\)
là phân số tối giản \(\left(n\in N\right)\)
chứng minh phân số sau đây tối giản:
\(\frac{12n+1}{30n+2}\left(n\in N\right)\)
gọi d là UCLN(12n+1;30n+2)
ta có:
[5(12n+1)]-[2(30n+2)] chia hết d
=>[60n+5]-[60n+4] chia hết d
=>1 chia hết d
=>d=1
=>phân số trên tối giản
Giúp mình với các bạn ơi!
Bài 1: Rút gọn phân số:
a) \(\frac{17.5-17}{3-20}\)
b) \(\frac{49+7.49}{98}\)
c*) \(\frac{7}{9.10^2-2.10^2}\)
Bài 2*:
a) Chứng minh: M = \(\frac{n-1}{n-2}\)\(\left(n\in Z;n\ne2\right)\)là phân số tối giản.
b) Chứng minh: M= \(\frac{2n+1}{n}\)\(\left(n\in Z;n\ne0\right)\)là phân số tối giản.
a) Tìm a để \(\frac{a}{74}\)là phân số tối giản
b) Chứng minh\(\frac{3n}{3n+1}\)là phân số tối giản (\(n\in N\))
a) Hướng dẫn: Đầu tiên chỉ cần phân tích ước của 74. Vậy để \(\frac{a}{74}\)tối giản thì a \(\ne\)Ư(74) hay a \(\ne\)B[(Ư)74]
b) Gọi d là ước chung lớn nhất của 3n và 3n+1
=> 3n \(⋮\)d
Và: 3n+1 \(⋮\)d
=> (3n+1)-3n \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\)Ư(1)
=> d \(\in\){ 1}
Vậy \(\frac{3n}{3n+1}\)là phân số tối giản
Duyệt đi, chúc bạn học giỏi!
Chứng minh phân số \(\frac{n}{n+1}\)là phân số tối giản ( n \(\in\) N, n \(\ne\)0)
Vì n và n + 1 là hai số tự nhiên liên tiếp nên Ư ( n, n + 1 ) = 1
=> \(\frac{n}{n+1}\) là phân số tối giản
Mk nói thế cho nhanh thôi chứ đg còn cách khác nữa
Gọi d là ƯCLN (n,n+1)
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow\left(n+1\right)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\frac{n}{n+1}\)là phân số tối giản