Cho C= \(\frac{5}{4}+\frac{5}{4^2}+\frac{5}{4^3}+..+\frac{5}{4^{99}}\) Chứng minh C<5/3
Cho C = \(\frac{5}{4}+\frac{5}{4^2}+\frac{5}{4^3}+...+\frac{5}{4^{99}}.\)Chứng minh rằng C <\(\frac{5}{3}\)
C = \(\frac{5}{4}+\frac{5}{4^2}+\frac{5}{4^3}+...+\frac{5}{4^{99}}\)
= \(5\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{99}}\right)\)
Đặt A = \(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{99}}\)
4A = \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{99}}\)
4A - A = \(\left(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{99}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{99}}\right)\)
3A = \(1-\frac{1}{4^{99}}< 1\)
=> A < \(\frac{1}{3}\) (1)
Thay (1) vào C ta được:
\(C< 5\cdot\frac{1}{3}=\frac{5}{3}\)(đpcm)
Ta có:\(\frac{5}{4}\)< \(\frac{5}{3}\)Mà C = \(\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{99}}\)<\(\frac{5}{4}\)
\(\Rightarrow\)C < \(\frac{5}{3}\)
Cho C =\(\frac{5}{4}+\frac{5}{4^2}+\frac{5}{4^3}+...+\frac{5}{4^{99}}\)
Chứng minh C <\(\frac{5}{3}\)
Cho C = \(\frac{5}{4}\) + \(\frac{5}{4^2}\) + \(\frac{5}{4^3}\) + ... + \(\frac{5}{4^{99}}\)
Chứng minh rằng C < \(\frac{5}{3}\)
\(C=\frac{5}{4}+\frac{5}{4^2}+\frac{5}{4^3}+...+\frac{5}{4^{99}}\)
\(4C=5+\frac{5}{4}+\frac{5}{4^2}+\frac{5}{4^3}+...+\frac{5}{4^{98}}\)
\(4C-C=\left(5+\frac{5}{4}+...+\frac{5}{4^{98}}\right)-\left(\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{99}}\right)\)
\(3C=5-\frac{5}{4^{99}}\)
\(C=\frac{5-\frac{5}{4^{99}}}{3}\)
\(C=\frac{5}{3}-\frac{5}{4^{99}.3}< C\)
đpcm
Chứng minh rằng:
a. \(\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+\frac{4}{3^5}+...+\frac{99}{3^{100}}+\frac{100}{3^{101}}< \frac{1}{4}\)
b.\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
c.\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{1}{16}\)
d. \(\frac{1}{5^2}-\frac{2}{5^3}+\frac{3}{5^4}-\frac{4}{5^5}+...+\frac{99}{5^{100}}-\frac{100}{5^{101}}< \frac{1}{36}\)
Cho S=\(\frac{1}{5^2}-\frac{2}{5^3}+\frac{3}{5^4}-\frac{4}{5^5}+...+\frac{99}{5^{100}}-\frac{100}{5^{101}}\)
Chứng minh rằng \(S< \frac{1}{36}\)
Cho C=\(\frac{5}{4}\)+\(\frac{5}{4^2}\)+\(\frac{5}{4^3}\)+...+\(\frac{5}{4^{99}}\). Chứng minh:C<\(\frac{5}{3}\)
Chứng minh rằng \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\frac{5}{3^5}-.........+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Chứng minh rằng :
a) \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\ldots+\frac{99}{100!}<1\)
b) \(\frac{1\times2-1}{2!}+\frac{2\times3-1}{3!}+\frac{3\times4-1}{4!}+\cdots+\frac{99\times100-1}{100}<2\)
c) \(\frac{1}{1\times2}+\frac{1}{3\times4}+\frac{1}{5\times6}+\cdots+\frac{1}{49\times50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+\frac{1}{29}+\cdots+\frac{1}{50}\)
c: \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\cdots+\frac{1}{49\cdot50}\)
\(=1-\frac12+\frac13-\frac14+\cdots+\frac{1}{49}-\frac{1}{50}\)
\(=1+\frac12+\frac13+\frac14+\cdots+\frac{1}{49}+\frac{1}{50}-2\left(\frac12+\frac14+\cdots+\frac{1}{50}\right)\)
\(=1+\frac12+\frac13+\frac14+\cdots+\frac{1}{50}-1-\frac12-\cdots-\frac{1}{25}\)
\(=\frac{1}{26}+\frac{1}{27}+\cdots+\frac{1}{50}\)
giúp em câu a b nx dc hem tại khó quá em chx học kiểu chấm than ở mẫu số
\(\frac{1}{2}-\frac{-2}{2^2}+\frac{3}{2^3}-\frac{4}{2^4}+\frac{4}{2^5}+...+\frac{99}{2^{99}}-\frac{100}{2^{100}}< \frac{2}{9}\)
Chứng minh
xem lại xem có sai đề bài không bạn ơi, sai thì sửa lại nhé